Journal of Polymers and the Environment

, Volume 26, Issue 7, pp 2773–2781 | Cite as

Cellulose Fiber Isolation and Characterization from Sweet Blue Lupin Hull and Canola Straw

  • Deniz Ciftci
  • Rolando A. Flores
  • Marleny D. A. Saldaña
Original Paper
  • 51 Downloads

Abstract

In this study, cellulose fibers were removed from crop by-products using a combination of sodium hydroxide treatment followed by acidified sodium chlorite treatment. The objective was to obtain high recovery of cellulose by optimizing treatment conditions with sodium hydroxide (5–20%, 25–75 °C and 2–10 h) followed by acidified sodium chlorite (1.7%, 75 °C for 2–6 h) to remove maximum lignin and hemicellulose, as well as to investigate the effect of lignin content of the starting materials on the treatment efficiency. Samples were characterized for their chemical composition, crystallinity, thermal behavior and morphology to evaluate the effects of treatments on the fibers’ structure. The optimum sodium hydroxide treatment conditions for maximum cellulose recovery was at 15% NaOH concentration, 99 °C and 6 h. Subsequent acidified sodium chlorite treatment at 75 °C was found to be effective in removing both hemicellulose and lignin, resulting in higher recovery of cellulose in lupin hull (~ 95%) and canola straw (~ 93%). The resultant cellulose fibers of both crop by-products had increased crystallinity without changing cellulose I structure (~ 68–73%). Improved thermal stabilities were observed with increased onset of degradation temperatures up to 307–318 °C. Morphological investigations validated the effectiveness of treatments, revealing disrupted cell wall matrix and increased surface area due to the removal of non-cellulosics. The results suggest that the optimized combination of sodium hydroxide and acidified sodium chlorite treatments could be effectively used for the isolation of cellulose fibers from sweet blue lupin hull and canola straw, which find a great number of uses in a wide range of industrial applications.

Keywords

Acidified sodium chlorite Canola straw Cellulose Lignocellulosic biomass Lupin hull Sodium hydroxide 

Notes

Acknowledgements

We are grateful to Natural Sciences and Engineering Research Council of Canada (NSERC, #05356-2014) and the Food Processing Center of University of Nebraska-Lincoln for the financial support to carry out this research.

References

  1. 1.
    Azizi Samir MAS, Alloin F, Dufresne A (2005) Biomacromolecules 6:612–626CrossRefGoogle Scholar
  2. 2.
    Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Biomacromolecules 10:162–165CrossRefGoogle Scholar
  3. 3.
    Kadla JF, Gilbert RD (2000) Cell Chem Technol 34:197–216Google Scholar
  4. 4.
    Kumar V, Reus-Medina MDL, Yang D (2002) Int J Pharm 235:129–140CrossRefGoogle Scholar
  5. 5.
    Madani A, Kiiskinen H, Olson JA, Martinez MD (2011) Nord Pulp Pap Res J 26:306–311CrossRefGoogle Scholar
  6. 6.
    Osong SH, Norgren S, Engstrand P (2015) Cellulose 23:1–31Google Scholar
  7. 7.
    Modenbach A (2013) Ph.D. dissertation at the University of Kentucky, pp 147–191Google Scholar
  8. 8.
    Silverstein RA, Chen Y, Sharma-Shivappa RR, Boyette MD, Osborne J (2007) Bioresour Technol 98:3000–3011CrossRefGoogle Scholar
  9. 9.
    Pedersen M, Meyer AS (2009) Biotechnol Prog 25:399–408CrossRefGoogle Scholar
  10. 10.
    Pan X, Xie D, Kang KY (2007) Appl Biochem Biotechnol 140:367–377Google Scholar
  11. 11.
    Ciftci D, Saldaña MDA (2015) Bioresour Technol 194:75–82CrossRefGoogle Scholar
  12. 12.
    Carvalheiro F, Duarte LC, Gírio FM (2008) J Sci Ind Res 67:849–864Google Scholar
  13. 13.
    Kim JS, Lee YY, Kim TH (2016) Bioresour Technol 199:42–48CrossRefGoogle Scholar
  14. 14.
    Kim TH, Lee YY (2007) Appl Biochem Biotechnol 137:81–92Google Scholar
  15. 15.
    Tajkarimi M, Riemann HP, Hajmeer MN, Gomez EL, Rzazvilar V, Cliver DO (2008) Int J Food Microbiol 122:23–28CrossRefGoogle Scholar
  16. 16.
    Wyman CE, Dale BE, Elander RT, Holzapple M, Ladisch MR, Lee YY (2005) Bioresour Technol 96:1959–1966CrossRefGoogle Scholar
  17. 17.
    Hubbell CA, Ragauskas AJ (2010) Bioresour Technol 101:7410–7415CrossRefGoogle Scholar
  18. 18.
    Deshwal BR, Jo HD, Lee HK (2004) Can J Chem Eng 82(3):619–623CrossRefGoogle Scholar
  19. 19.
    Yue Y, Han J, Han G, Zhang Q, French AD, Wu Q (2015) Carbohydr Polym 133:438–447CrossRefGoogle Scholar
  20. 20.
    Ruangudomsakul W, Ruksakulpiwat C, Ruksakulpiwat Y (2015) Macromol Symp 354:170–176CrossRefGoogle Scholar
  21. 21.
    Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) NREL/TP-510-42618. National Renewable Laboratory, GoldenGoogle Scholar
  22. 22.
    Segal L, Creely L, Martin AE, Conrad CM (1959) Text Res J 29:786–794CrossRefGoogle Scholar
  23. 23.
    Bailey RW, Mills SE, Hove EL (1974) J Sci Food Agric 25:955–961CrossRefGoogle Scholar
  24. 24.
    Pronyk C, Mazza G (2012) Bioresour Technol 106:117–124CrossRefGoogle Scholar
  25. 25.
    Rambabua N, Panthapulakkalb S, Sain M, Dalai AK (2016) Ind Crop Prod 83:746–754CrossRefGoogle Scholar
  26. 26.
    Lynd LR, Cushman JH, Nichols RJ, Wyman CE (1991) Science 251(4999):1318–1323CrossRefGoogle Scholar
  27. 27.
    Sánchez C (2009) Biotechnol Adv 27:85–194CrossRefGoogle Scholar
  28. 28.
    Grierer J (1986) Wood Sci Technol 20(1):1–33CrossRefGoogle Scholar
  29. 29.
    Nishiyama Y (2009) J Wood Sci 55(4):241–249CrossRefGoogle Scholar
  30. 30.
    Revol J, Dietrich A, Goring D (1987) Can J Chem 65:1724–1725CrossRefGoogle Scholar
  31. 31.
    Alemdar A, Sain M (2008) Bioresour Technol 99(6):1664–1671CrossRefGoogle Scholar
  32. 32.
    Ray D, Sarkar BK, Basak RK, Rana AK (2002) J Appl Polym Sci 85:2594–2599CrossRefGoogle Scholar
  33. 33.
    Mandal A, Chakrabarty D (2011) Carbohydr Polym 86:1291–1299CrossRefGoogle Scholar
  34. 34.
    Manfredi BL, Rodrigue ES, Wladyka PM, Vazquez A (2006) Polym Degrad Stabil 91:255–261CrossRefGoogle Scholar
  35. 35.
    Yang HP, Yan R, Chen HP, Zhen CG, Lee DH, Liang DT (2006) Energy Fuels 20:388–393CrossRefGoogle Scholar
  36. 36.
    Brebu M, Vasile C (2010) Cell Chem Technol 44(9):353–363Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Deniz Ciftci
    • 1
  • Rolando A. Flores
    • 2
    • 3
  • Marleny D. A. Saldaña
    • 1
  1. 1.Department of Agricultural, Food and Nutritional ScienceUniversity of AlbertaEdmontonCanada
  2. 2.Department of Food Science and Technology, The Food Processing CenterUniversity of Nebraska-LincolnLincolnUSA
  3. 3.College of Agricultural, Consumer and Environmental SciencesNew Mexico State UniversityLas CrucesUSA

Personalised recommendations