Journal of Polymers and the Environment

, Volume 26, Issue 7, pp 2793–2802 | Cite as

Effects of UV/Photo-Initiator Treatments on Enhancement of Crystallinity of Polylactide Films and Their Physicochemical Properties

  • Mijanur Rahman
  • Pakorn Opaprakasit
Original Paper


Effects of UV/photo-initiator treatments on crystal formation and properties of polylactide (PLLA) films are investigated. Camphorquinone and riboflavin photo-initiator solutions in methanol are employed in the treatment of amorphous quenched PLLA films. Results from FTIR, ATR-FTIR, DSC, XRD, and SEM show evidence of crystalline domain formation dispersed throughout the film. 1H NMR and GPC results suggest that the molecular weights of the polymer slightly decrease after the treatment. This indicates that the treatment leads to a diffusion of the photo-initiators molecules through the film matrix, resulting in a low degree of PLLA chain scissions, and formation of carboxylic acid and hydroxyl polar end groups. This, in turn, induces PLLA crystallization, which imposes profound effects on surface wettability and physical and mechanical properties of the samples. The process can be applied in optimizing properties of PLLA films with shorter treatment times, compared to other methods, which is suitable for use in various fields; especially those that require specific characteristics like biomedical, packaging and environmental applications.


Polylactide Photo-initiator Crystallization Glass transition temperature (\({{\text{T}}_{\text{g}}}\)Tensile test 



The authors acknowledge financial support from the National Research University (NRU) grant, provided from The Office of Higher Education Commission (OHEC), the Thammasat University Research Fund (Theme research), and the Center of Excellence in Materials and Plasma Technology (CoE M@P Tech), Thammasat University. Mijanur Rahman thanks the support from the Graduate Scholarship Program for Excellence Foreign scholarship (EFS) by SIIT.


  1. 1.
    Garlotta D (2001) J Polym Environ 9:63–84CrossRefGoogle Scholar
  2. 2.
    Hartmann MH (1998) In: Kaplan DL (ed) Biopolymers from renewable resources. Springer, Berlin, pp 367–411CrossRefGoogle Scholar
  3. 3.
    Auras RA, Lim LT, Selke SEM, Tsuji H (2011) Poly(lactic acid): synthesis, structures, properties, processing, and applications. Wiley, New JerseyGoogle Scholar
  4. 4.
    Tokiwa Y, Calabia BP (2006) Appl Microbiol Biotechnol 72:244–251CrossRefPubMedGoogle Scholar
  5. 5.
    Fukushima K, Abbate C, Tabuani D, Gennari M, Camino G (2009) Polym Degrad Stab 94:1646–1655CrossRefGoogle Scholar
  6. 6.
    Leenslag JW, Pennings AJ, Bos RRM, Rozema FR, Boering G (1987) Biomaterials 8:311–314CrossRefPubMedGoogle Scholar
  7. 7.
    Lim JY, Kim SH, Lim S, Kim YH (2003) Macromol Mater Eng 288:50–57CrossRefGoogle Scholar
  8. 8.
    Nampoothiri KM, Nair NR, John RP (2010) Bioresour Technol 101:8493–8501CrossRefGoogle Scholar
  9. 9.
    Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Compr Rev Food Sci Food Saf 9:552–571CrossRefGoogle Scholar
  10. 10.
    Drumright RE, Gruber PR, Henton DE (2000) Adv Mater 12:1841–1846CrossRefGoogle Scholar
  11. 11.
    Kumari A, Yadav SK, Yadav SC (2010) Colloids Surf B 75:1–18CrossRefGoogle Scholar
  12. 12.
    Sun Z, Zussman E, Yarin AL, Wendorff JH, Greiner A (2003) Adv Mater 15:1929–1932CrossRefGoogle Scholar
  13. 13.
    Prokop A, Helling H-J, Hahn U, Udomkaewkanjana C, Rehm KE (2005) Clin Orthop Relat Res 432:226–233CrossRefGoogle Scholar
  14. 14.
    Auras R, Harte B, Selke S (2004) Macromol Biosci 4:835–864CrossRefPubMedGoogle Scholar
  15. 15.
    Devassine M, Henry F, Guerin P, Briand X (2002) Int J Pharm 242:399–404CrossRefPubMedGoogle Scholar
  16. 16.
    Rasselet D, Ruellan A, Guinault A, Miquelard-Garnier G, Sollogoub C, Fayolle B (2014) Eur Polym J 50:109–116CrossRefGoogle Scholar
  17. 17.
    Bocchini S, Frache A (2013) Express Polym Lett 7:431–442CrossRefGoogle Scholar
  18. 18.
    Zhang X, Espiritu M, Bilyk A, Kurniawan L (2008) Polym Degrad Stab 93:1964–1970CrossRefGoogle Scholar
  19. 19.
    Qiu Z, Pan H (2010) Compos Sci Technol 70:1089–1094CrossRefGoogle Scholar
  20. 20.
    Kikkawa Y, Abe H, Iwata T, Inoue Y, Doi Y (2002) Biomacromolecules 3:350–356CrossRefPubMedGoogle Scholar
  21. 21.
    Tsuji H, Miyauchi S (2001) Polym Degrad Stab 71:415–424CrossRefGoogle Scholar
  22. 22.
    Aoyagi Y, Yamashita K, Doi Y (2002) Polym Degrad Stab 76:53–59CrossRefGoogle Scholar
  23. 23.
    Wachsen O, Platkowski K, Reichert K-H (1997) Polym Degrad Stab 57:87–94CrossRefGoogle Scholar
  24. 24.
    Opaprakasit P, Opaprakasit M, Tangboriboonrat P (2007) Appl Spectrosc 61:1352–1358CrossRefPubMedGoogle Scholar
  25. 25.
    Opaprakasit P, Opaprakasit M (2008) Macromol Symp 264:113–120CrossRefGoogle Scholar
  26. 26.
    Hsu ST, Yao YL (2014) J Manuf Sci Eng Trans ASME 136:021006-1–021006-9CrossRefGoogle Scholar
  27. 27.
    Tabi T, Sajó I, Szabó F, Luyt A, Kovács J (2010) Express Polym Lett 4:659–668CrossRefGoogle Scholar
  28. 28.
    Nugroho P, Mitomo H, Yoshii F, Kume T (2001) Polym Degrad Stab 72:337–343CrossRefGoogle Scholar
  29. 29.
    Milicevic D, Trifunovic S, Galovic S, Suljovrujic E (2007) Radiat Phys Chem 76:1376–1380CrossRefGoogle Scholar
  30. 30.
    Montanari L, Cilurzo F, Selmin F, Conti B, Genta I, Poletti G, Orsini F, Valvo L (2003) J Controll Release 90:281–290CrossRefGoogle Scholar
  31. 31.
    Hsu S-T, Tan H, Yao YL (2012) Polym Degrad Stab 97:88–97CrossRefGoogle Scholar
  32. 32.
    Copinet A, Bertrand C, Govindin S, Coma V, Couturier Y (2004) Chemosphere 55:763–773CrossRefPubMedGoogle Scholar
  33. 33.
    Yasuda N, Wang Y, Tsukegi T, Shirai Y, Nishida H (2010) Polym Degrad Stab 95:1238–1243CrossRefGoogle Scholar
  34. 34.
    Nakayama N, Hayashi T (2007) Polym Degrad Stab 92:1255–1264CrossRefGoogle Scholar
  35. 35.
    Wang WW, Man CZ, Zhang CM, Jiang L, Dan Y, Nguyen TP (2013) Polym Degrad Stab 98:885–893CrossRefGoogle Scholar
  36. 36.
    Man C, Zhang C, Liu Y, Wang W, Ren W, Jiang L, Reisdorffer F, Nguyen TP, Dan Y (2012) Polym Degrad Stab 97:856–862CrossRefGoogle Scholar
  37. 37.
    Fischer EW, Sterzel HJ, Wegner G (1973) Kolloid Z Z Polym 251:980–990CrossRefGoogle Scholar
  38. 38.
    Pan P, Zhu B, Kai W, Dong T, Inoue Y (2008) Macromolecules 41:4296–4304CrossRefGoogle Scholar
  39. 39.
    Pan P, Kai W, Zhu B, Dong T, Inoue Y (2007) Macromolecules 40:6898–6905CrossRefGoogle Scholar
  40. 40.
    Socrates G (1994) Infrared characteristic group frequencies: tables and charts. Wiley, New YorkGoogle Scholar
  41. 41.
    Gardette M, Thérias S, Gardette J-L, Murariu M, Dubois P (2011) Polym Degrad Stab 96:616–623CrossRefGoogle Scholar
  42. 42.
    Meaurio E, López-Rodríguez N, Sarasua JR (2006) Macromolecules 39:9291–9301CrossRefGoogle Scholar
  43. 43.
    Petchsuk A, Submark W, Opaprakasit P (2013) Polym J 45:406–412CrossRefGoogle Scholar
  44. 44.
    Fulmer GR, Miller AJ, Sherden NH, Gottlieb HE, Nudelman A, Stoltz BM, Bercaw JE, Goldberg KI (2010) Organometallics 29:2176–2179CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Biochemical Engineering and Technology, Sirindhorn International Institute of Technology (SIIT)Thammasat UniversityPathum ThaniThailand

Personalised recommendations