Skip to main content
Log in

Effects of UV/Photo-Initiator Treatments on Enhancement of Crystallinity of Polylactide Films and Their Physicochemical Properties

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Effects of UV/photo-initiator treatments on crystal formation and properties of polylactide (PLLA) films are investigated. Camphorquinone and riboflavin photo-initiator solutions in methanol are employed in the treatment of amorphous quenched PLLA films. Results from FTIR, ATR-FTIR, DSC, XRD, and SEM show evidence of crystalline domain formation dispersed throughout the film. 1H NMR and GPC results suggest that the molecular weights of the polymer slightly decrease after the treatment. This indicates that the treatment leads to a diffusion of the photo-initiators molecules through the film matrix, resulting in a low degree of PLLA chain scissions, and formation of carboxylic acid and hydroxyl polar end groups. This, in turn, induces PLLA crystallization, which imposes profound effects on surface wettability and physical and mechanical properties of the samples. The process can be applied in optimizing properties of PLLA films with shorter treatment times, compared to other methods, which is suitable for use in various fields; especially those that require specific characteristics like biomedical, packaging and environmental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Garlotta D (2001) J Polym Environ 9:63–84

    Article  CAS  Google Scholar 

  2. Hartmann MH (1998) In: Kaplan DL (ed) Biopolymers from renewable resources. Springer, Berlin, pp 367–411

    Chapter  Google Scholar 

  3. Auras RA, Lim LT, Selke SEM, Tsuji H (2011) Poly(lactic acid): synthesis, structures, properties, processing, and applications. Wiley, New Jersey

    Google Scholar 

  4. Tokiwa Y, Calabia BP (2006) Appl Microbiol Biotechnol 72:244–251

    Article  CAS  PubMed  Google Scholar 

  5. Fukushima K, Abbate C, Tabuani D, Gennari M, Camino G (2009) Polym Degrad Stab 94:1646–1655

    Article  CAS  Google Scholar 

  6. Leenslag JW, Pennings AJ, Bos RRM, Rozema FR, Boering G (1987) Biomaterials 8:311–314

    Article  CAS  PubMed  Google Scholar 

  7. Lim JY, Kim SH, Lim S, Kim YH (2003) Macromol Mater Eng 288:50–57

    Article  CAS  Google Scholar 

  8. Nampoothiri KM, Nair NR, John RP (2010) Bioresour Technol 101:8493–8501

    Article  CAS  Google Scholar 

  9. Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Compr Rev Food Sci Food Saf 9:552–571

    Article  CAS  Google Scholar 

  10. Drumright RE, Gruber PR, Henton DE (2000) Adv Mater 12:1841–1846

    Article  CAS  Google Scholar 

  11. Kumari A, Yadav SK, Yadav SC (2010) Colloids Surf B 75:1–18

    Article  CAS  Google Scholar 

  12. Sun Z, Zussman E, Yarin AL, Wendorff JH, Greiner A (2003) Adv Mater 15:1929–1932

    Article  CAS  Google Scholar 

  13. Prokop A, Helling H-J, Hahn U, Udomkaewkanjana C, Rehm KE (2005) Clin Orthop Relat Res 432:226–233

    Article  Google Scholar 

  14. Auras R, Harte B, Selke S (2004) Macromol Biosci 4:835–864

    Article  CAS  PubMed  Google Scholar 

  15. Devassine M, Henry F, Guerin P, Briand X (2002) Int J Pharm 242:399–404

    Article  CAS  PubMed  Google Scholar 

  16. Rasselet D, Ruellan A, Guinault A, Miquelard-Garnier G, Sollogoub C, Fayolle B (2014) Eur Polym J 50:109–116

    Article  CAS  Google Scholar 

  17. Bocchini S, Frache A (2013) Express Polym Lett 7:431–442

    Article  CAS  Google Scholar 

  18. Zhang X, Espiritu M, Bilyk A, Kurniawan L (2008) Polym Degrad Stab 93:1964–1970

    Article  CAS  Google Scholar 

  19. Qiu Z, Pan H (2010) Compos Sci Technol 70:1089–1094

    Article  CAS  Google Scholar 

  20. Kikkawa Y, Abe H, Iwata T, Inoue Y, Doi Y (2002) Biomacromolecules 3:350–356

    Article  CAS  PubMed  Google Scholar 

  21. Tsuji H, Miyauchi S (2001) Polym Degrad Stab 71:415–424

    Article  CAS  Google Scholar 

  22. Aoyagi Y, Yamashita K, Doi Y (2002) Polym Degrad Stab 76:53–59

    Article  CAS  Google Scholar 

  23. Wachsen O, Platkowski K, Reichert K-H (1997) Polym Degrad Stab 57:87–94

    Article  CAS  Google Scholar 

  24. Opaprakasit P, Opaprakasit M, Tangboriboonrat P (2007) Appl Spectrosc 61:1352–1358

    Article  CAS  PubMed  Google Scholar 

  25. Opaprakasit P, Opaprakasit M (2008) Macromol Symp 264:113–120

    Article  CAS  Google Scholar 

  26. Hsu ST, Yao YL (2014) J Manuf Sci Eng Trans ASME 136:021006-1–021006-9

    Article  Google Scholar 

  27. Tabi T, Sajó I, Szabó F, Luyt A, Kovács J (2010) Express Polym Lett 4:659–668

    Article  CAS  Google Scholar 

  28. Nugroho P, Mitomo H, Yoshii F, Kume T (2001) Polym Degrad Stab 72:337–343

    Article  CAS  Google Scholar 

  29. Milicevic D, Trifunovic S, Galovic S, Suljovrujic E (2007) Radiat Phys Chem 76:1376–1380

    Article  CAS  Google Scholar 

  30. Montanari L, Cilurzo F, Selmin F, Conti B, Genta I, Poletti G, Orsini F, Valvo L (2003) J Controll Release 90:281–290

    Article  CAS  Google Scholar 

  31. Hsu S-T, Tan H, Yao YL (2012) Polym Degrad Stab 97:88–97

    Article  CAS  Google Scholar 

  32. Copinet A, Bertrand C, Govindin S, Coma V, Couturier Y (2004) Chemosphere 55:763–773

    Article  CAS  PubMed  Google Scholar 

  33. Yasuda N, Wang Y, Tsukegi T, Shirai Y, Nishida H (2010) Polym Degrad Stab 95:1238–1243

    Article  CAS  Google Scholar 

  34. Nakayama N, Hayashi T (2007) Polym Degrad Stab 92:1255–1264

    Article  CAS  Google Scholar 

  35. Wang WW, Man CZ, Zhang CM, Jiang L, Dan Y, Nguyen TP (2013) Polym Degrad Stab 98:885–893

    Article  CAS  Google Scholar 

  36. Man C, Zhang C, Liu Y, Wang W, Ren W, Jiang L, Reisdorffer F, Nguyen TP, Dan Y (2012) Polym Degrad Stab 97:856–862

    Article  CAS  Google Scholar 

  37. Fischer EW, Sterzel HJ, Wegner G (1973) Kolloid Z Z Polym 251:980–990

    Article  CAS  Google Scholar 

  38. Pan P, Zhu B, Kai W, Dong T, Inoue Y (2008) Macromolecules 41:4296–4304

    Article  CAS  Google Scholar 

  39. Pan P, Kai W, Zhu B, Dong T, Inoue Y (2007) Macromolecules 40:6898–6905

    Article  CAS  Google Scholar 

  40. Socrates G (1994) Infrared characteristic group frequencies: tables and charts. Wiley, New York

    Google Scholar 

  41. Gardette M, Thérias S, Gardette J-L, Murariu M, Dubois P (2011) Polym Degrad Stab 96:616–623

    Article  CAS  Google Scholar 

  42. Meaurio E, López-Rodríguez N, Sarasua JR (2006) Macromolecules 39:9291–9301

    Article  CAS  Google Scholar 

  43. Petchsuk A, Submark W, Opaprakasit P (2013) Polym J 45:406–412

    Article  CAS  Google Scholar 

  44. Fulmer GR, Miller AJ, Sherden NH, Gottlieb HE, Nudelman A, Stoltz BM, Bercaw JE, Goldberg KI (2010) Organometallics 29:2176–2179

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Research University (NRU) grant, provided from The Office of Higher Education Commission (OHEC), the Thammasat University Research Fund (Theme research), and the Center of Excellence in Materials and Plasma Technology (CoE M@P Tech), Thammasat University. Mijanur Rahman thanks the support from the Graduate Scholarship Program for Excellence Foreign scholarship (EFS) by SIIT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pakorn Opaprakasit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M., Opaprakasit, P. Effects of UV/Photo-Initiator Treatments on Enhancement of Crystallinity of Polylactide Films and Their Physicochemical Properties. J Polym Environ 26, 2793–2802 (2018). https://doi.org/10.1007/s10924-017-1162-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1162-7

Keywords

Navigation