Skip to main content
Log in

Comparative Response of Indigenously Developed Bacterial Consortia on Progressive Degradation of Polyhydroxybutyrate Film Composites

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The global demand of bioplastics has lead to an exponential increase in their production commercially. Hence, biodegradable nature needs to be evaluated in various ecosystems viz. air, water, soil and other environmental conditions to avoid the polymeric waste accumulation in the nature. In this paper, we investigated the progressive response of two indigenously developed bacterial consortia, i.e., consortium-I (C-I: Pseudomonas sp. strain Rb10, Pseudomonas sp. strain Rb11 and Bacillus sp. strain Rb18), and consortium-II (C-II: Lysinibacillus sp. strain Rb1, Pseudomonas sp. strain Rb13 and Pseudomonas sp. strain Rb19), against biodegradation behavior of polyhydroxybutyrate (PHB) film composites, under natural soil ecosystem (in net house). The biodegraded films recovered after 6 and 9 months of incubation were analyzed through Fourier transform infrared spectroscopy and scanning electron microscopy to determine the variations in chemical and morphological parameters (before and after incubation). Noticeable changes in the bond intensity, surface morphology and conductivity were found when PHB composites were treated with C-II. These changes were drastic in case of blends in comparison to copolymer. The potential isolates not only survived, but, also, there was a significant increase in bacterial diversity during whole period of incubation. To the best of our knowledge, it is the first report which described the biodegradation potential of Lysinibacillus sp. as a part of C-II with Pseudomonas sp. against PHB film composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Xiao N, Jiao N (2011) Appl Environ Microbiol 77(21):7445–7450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Doi Y, Fukuda K (2014) Biodegradable plastics and polymers: proceedings of the third international workshop on biodegradable plastics and polymers. Elsevier, Amsterdam

    Google Scholar 

  3. Rajaratanam DD, Ariffin H, Hassan MA, Kawasaki Y, Nishida H (2017) Polym Degrad Stab. https://doi.org/10.1016/j.polymdegradstab.2017.01.007

    Article  Google Scholar 

  4. Chen GQ (2010) Plastics completely synthesized by bacteria: polyhydroxyalkanoates, vol. 14. Springer, Berlin, pp 17–37

    Book  Google Scholar 

  5. Weng YX, Wang L, Zhang M, Wang XL, Wang YZ (2013) Polym Test 32:60–70

    Article  CAS  Google Scholar 

  6. Pachekoski WM, Dalmolin C, Agnelli JAM (2013) Mater Res 16(2):327–332

    CAS  Google Scholar 

  7. Sznajder A, Pfeiffer D, Jendrossek D (2015) Appl Environ Microbiol 81(5):1847–1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wei L, Liang S, McDonald AG (2015) Ind Crop Prod 69:91–103

    Article  CAS  Google Scholar 

  9. Bohlmann GM (2005) General characteristics, processability, industrial applications and market evolution of biodegradable polymers. In: Bastioli C (ed) Handbook of biodegradable polymers. Rapra Technology Ltd, Shropshire, pp 183–212

    Google Scholar 

  10. Domenek S, Courgneau C, Ducruet V (2011) Characteristics and applications of poly(lactide). In: Kalia S, Averous L (eds) Biopolymers: biomedical and environmental applications. Wiley, Hoboken, pp 183–223

    Chapter  Google Scholar 

  11. Barghini A, Ivanova VI, Imam SH, Chiellini E (2010) J Polym Sci A 48:5282–5288

    Article  CAS  Google Scholar 

  12. Riedel SL, Bader J, Brigham CJ, Budde CF, Yusof ZAM, Rha C, Sinskey AJ (2012) Biotechnol Bioeng 109(1):74–83

    Article  CAS  PubMed  Google Scholar 

  13. Arrieta MP, Lopez J, Rayon E, Jimenez A (2014) Polym Degrad Stab 108:307–318

    Article  CAS  Google Scholar 

  14. Armentano I, Fortunati E, Burgos N, Dominici F, Luzi F, Fiori S, Jiménez A, Yoon K, Ahn J, Kang S, Kenny JM (2015) Express Polym Lett 9(7):583–596

    Article  CAS  Google Scholar 

  15. Ren H, Hang Y, Zhai H, Chen J (2015) Cell Chem Technol 49(7–8):641–652

    CAS  Google Scholar 

  16. Joyyi L, Ahmad Thirmizir MZ, Salim MS, Han L, Murugan P, Kasuya Ki, Maurer FHJ, Zainal Arifin MI, Sudesh K (2017) Polym Degrad Stab. https://doi.org/10.1016/j.polymdegradstab.2017.01.004

    Article  Google Scholar 

  17. Pathak S, Sneha CLR, Mathew BB (2014) JPBPC 2(4):84–90

    CAS  Google Scholar 

  18. Volova TG, Boyandin AN, Vasiliev AD, Karpov VA, Prudnikova SV, Mishukova OV, Boyarskikh UA, Filipenko ML, Rudnev VP, Ba Xuan B, Vit Dung V, Gitelson II (2010) Polym Degrad Stab 95:2350–2359

    Article  CAS  Google Scholar 

  19. Woolnough CA, Yee LH, Charlton TS, Foster LJR (2013) PLoS ONE. https://doi.org/10.1371/journal.pone.0075817

    Article  PubMed  PubMed Central  Google Scholar 

  20. Volova TG, Boyandin AN, Prudnikova SV (2015) J Siberian Fed Univ Biol 2(8):152–167

    Article  Google Scholar 

  21. Mostafa NA, Farag AA, Abo-dief HM, Tayeb AM (2015) Arab J Chem. https://doi.org/10.1016/j.arabjc.2015.04.008

    Article  Google Scholar 

  22. Apinya T, Sombatsompop N, Prapagdee B (2015) Int Biodeterior Biodegrad 99:23–30

    Article  CAS  Google Scholar 

  23. Adhikari D, Mukai M, Kubota K, Kai T, Kaneko N (2016) J Agric Chem Environ 5:23–34

    CAS  Google Scholar 

  24. Nadia A, Gamal AE, Ayad F, Kumar S, Emad Y (2016) SpringerPlus 5:1–12. https://doi.org/10.1186/s40064-016-2480-2

    Article  CAS  Google Scholar 

  25. Boyandin AN, Prudnikova SV, Karpov VA, Ivonin VN, Ð NL, Nguy n TH, Lê TMH, Filichev NL, Levin AL, Filipenko L, Volova TG, Gitelson II (2013) Int Biodeterior Biodegrad 83:77–84

    Article  CAS  Google Scholar 

  26. Emadian SM, Onay TT, Demirel B (2016) Waste Manag. https://doi.org/10.1016/j.wasman.2016.10.006

    Article  PubMed  Google Scholar 

  27. Knoll M, Hamm TM, Wagner F, Martinez V, Pleiss J (2009) BMC Bioinform 10(89):1–8

    Google Scholar 

  28. Nakatsu CH, Torsvik V, Ovrea L (2000) Soil Sci Soc Am J 64:1382–1388

    Article  CAS  Google Scholar 

  29. Andrade LL, Leite DCA, Ferreira EM, Ferreira LQ, Paula GR, Maguire MJ, Hubert CRJ, Peixoto RS, Domingues RMCP., Rosado AS (2012) BMC Microbiol 12(186):1–10

    Google Scholar 

  30. Suyal DC, Yadav A, Shouche Y, Goel R (2015) Biologia 70:305–313

    Article  CAS  Google Scholar 

  31. Accinelli C, Saccà ML, Mencarelli M, Vicari A (2012) Chemosphere 89(2):136–143

    Article  CAS  PubMed  Google Scholar 

  32. Anstey A, Muniyasamy S, Reddy MM, Misra M, Mohanty A (2014) J Polym Environ 22:209–218

    Article  CAS  Google Scholar 

  33. Lipsa R, Tudorachi N, Darie-Nita RN, Oprică L, Vasile C, Chiriac C (2016) Int J Biol Macromol 88:515–526

    Article  CAS  PubMed  Google Scholar 

  34. Raghuwanshi S, Agarwal T, Yadav A, Zaidi MGH, Souche Y, Goel R (2016) Chem Ecol 32(6):583–597

    Article  CAS  Google Scholar 

  35. Goel R, Sah A, Kapri A (2010) DBT, India Patent 213/DEL/2011

  36. Negi H, Gupta S, Zaidi MGH, Goel R (2011) Biologija 57(4):141–147

    Article  CAS  Google Scholar 

  37. Raghuwanshi S, Negi H, Agarwal T, Zaidi MGH, Goel R (2015) Afr J Microbiol Res 9(24):1558–1572

    Article  CAS  Google Scholar 

  38. Zafar U, Houlden A, Robson GD (2013) Appl Environ Microbiol 79(23):7313–7324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Muyzer G, De Waal EC, Uitterlinden AG (1993) Appl Environ Microbiol 59(3):695–700

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kabir S, Rajendran N, Amemiya T, Itoh K (2003) J Biosci Bioeng 96(4):337–343

    Article  CAS  PubMed  Google Scholar 

  41. Iwamoto T, Tani K, Nakamura K, Suzuki Y, Kitagawa M, Eguchi M, Nasu M (2000) FEMS Microbiol Ecol 32(2):129–141

    Article  CAS  PubMed  Google Scholar 

  42. Soni R, Goel R (2010) Ekologija 56(3–4):99–104

    Article  CAS  Google Scholar 

  43. Omer A (2010) Life Sci J 7(4):124–131

    Google Scholar 

  44. Klayraung S, Viernstein H, Okonogi S (2009) Int J Pharm 370:54–60

    Article  CAS  PubMed  Google Scholar 

  45. Sandra CP, Rebeca BR (2015) Afr J Biotechnol 14(33):2547–2533

    Article  CAS  Google Scholar 

  46. Solanki HK, Shah DA (2016) J Food Process 2016:1–14

    Article  Google Scholar 

  47. Anwar MS, Negi H, Zaidi MGH, Gupta S, Goel R (2013) Braz Arch Biol Technol 56(3):475–484

    Article  CAS  Google Scholar 

  48. Phukon P, Saikia JP, Konwar BK (2012) Coll Surf B 92:30–34

    Article  CAS  Google Scholar 

  49. Wu CS (2014) J Polym Environ 22(3):384–392

    Article  CAS  Google Scholar 

  50. Bayari S, Severcan F (2005) J Mol Struct 744–747:529–534

    Article  CAS  Google Scholar 

  51. Conti DS, Yoshida MI, Pezzin SH, Coelho LAF (2006) Thermochim Acta 450(1–2):61–66

    Article  CAS  Google Scholar 

  52. Massardier-Nageotte V, Pestre C, Cruard-Pradet T, Bayard R (2006) Polym Degrad Stab 91(3):620–627

    Article  CAS  Google Scholar 

  53. Kale G, Kijchavengkul T, Auras R, Rubino M, Selke SE, Singh SP (2007) Macromol Biosci 7(3):255–277

    Article  CAS  PubMed  Google Scholar 

  54. Marcott C, Dowrey AE, Poppel JV, Noda I (2004) Vib Spectrosc 36:221–225

    Article  CAS  Google Scholar 

  55. Fukushima K, Feijoo JL, Yang MC (2012) Polym Degrad Stab 97(11):2347–2355

    Article  CAS  Google Scholar 

  56. Anwar MS, Kapri A, Chaudhry V, Mishra A, Ansari MW, Shouche Y, Nautiyal CS, Zaidi MGH, Goel R (2015) Protoplasma 253(4):1023–1032

    Article  CAS  PubMed  Google Scholar 

  57. Lopez JA, Naranjo JM, Higuita JC, Cubitto JC, Cardona CA, Villar MA (2012) Biotechnol Bioprocess Eng 17(2):250–258

    Article  CAS  Google Scholar 

  58. Goncalves S, Franchetti S (2013) Int J Mater Sci 3(2):154–161

    Google Scholar 

  59. Kai Z, Ying D, Qiang C (2003) Biochem Eng J 16(2):115–123

    Article  CAS  Google Scholar 

  60. Wu CS (2011) J Appl Polym Sci 121(1):427–435

    Article  CAS  Google Scholar 

  61. Iordanskii A, Bonartseva G, Pankova Y, Rogovina S (2014) J Inform Intell Knowl 6(4):479-51

    Google Scholar 

  62. Arya M, Kumar H, Zaidi MGH, Chauhan A (2013) Fabrication and characterization of graphite/epoxy composites. Proceedings of National Conference TSPC, pp 136–138

  63. Herrmann L, Sanon K, Zoubeirou AM (2012) Agric Ecosyst Environ 157:47–53

    Article  Google Scholar 

  64. Babic KH, Schauss K, Hai B (2008) Environ Microbiol 10(11):2922–2930

    Article  CAS  PubMed  Google Scholar 

  65. Schumpp O, Deakin WJ (2010) Trends Plant Sci 15(4):89–195

    Article  CAS  Google Scholar 

  66. Rastogi G, Sani RK (2011) Molecular techniques to assess microbial community structure, function, and dynamics in the environment. In: Ahmad I, Ahmad F, Pichtel J (eds) Microbes and microbial technology. Springer, New York, pp 29–57

  67. Allegrini M, Zabaloy MC, Gomez EDV (2015) Sci Total Environ 533:60–68

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Senior author (SR) acknowledges “Department of Science and Technology” for INSPIRE Junior Research Fellowship for providing financial assistance during the course of this study. We thank Central Drug Research Institute, Lucknow, College of Veterinary and Animal Sciences, Pantnagar, and Fraunhofer Institute IPK, Berlin, Germany for FT-IR, SEM analysis, and PHB film specimens, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shikha Raghuwanshi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 134 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raghuwanshi, S., Zaidi, M.G.H., Kumar, S. et al. Comparative Response of Indigenously Developed Bacterial Consortia on Progressive Degradation of Polyhydroxybutyrate Film Composites. J Polym Environ 26, 2661–2675 (2018). https://doi.org/10.1007/s10924-017-1159-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1159-2

Keywords

Navigation