Advertisement

Journal of Polymers and the Environment

, Volume 26, Issue 7, pp 2661–2675 | Cite as

Comparative Response of Indigenously Developed Bacterial Consortia on Progressive Degradation of Polyhydroxybutyrate Film Composites

  • Shikha Raghuwanshi
  • M. G. H. Zaidi
  • Saurabh Kumar
  • Reeta Goel
Original Paper
  • 114 Downloads

Abstract

The global demand of bioplastics has lead to an exponential increase in their production commercially. Hence, biodegradable nature needs to be evaluated in various ecosystems viz. air, water, soil and other environmental conditions to avoid the polymeric waste accumulation in the nature. In this paper, we investigated the progressive response of two indigenously developed bacterial consortia, i.e., consortium-I (C-I: Pseudomonas sp. strain Rb10, Pseudomonas sp. strain Rb11 and Bacillus sp. strain Rb18), and consortium-II (C-II: Lysinibacillus sp. strain Rb1, Pseudomonas sp. strain Rb13 and Pseudomonas sp. strain Rb19), against biodegradation behavior of polyhydroxybutyrate (PHB) film composites, under natural soil ecosystem (in net house). The biodegraded films recovered after 6 and 9 months of incubation were analyzed through Fourier transform infrared spectroscopy and scanning electron microscopy to determine the variations in chemical and morphological parameters (before and after incubation). Noticeable changes in the bond intensity, surface morphology and conductivity were found when PHB composites were treated with C-II. These changes were drastic in case of blends in comparison to copolymer. The potential isolates not only survived, but, also, there was a significant increase in bacterial diversity during whole period of incubation. To the best of our knowledge, it is the first report which described the biodegradation potential of Lysinibacillus sp. as a part of C-II with Pseudomonas sp. against PHB film composites.

Keywords

In situ biodegradation Poly(3-hydroxybutyrate) (PHB) Fourier transform infrared spectroscopy (FT-IR) Scanning electron microscopy Lysinibacillus sp. 

Notes

Acknowledgements

Senior author (SR) acknowledges “Department of Science and Technology” for INSPIRE Junior Research Fellowship for providing financial assistance during the course of this study. We thank Central Drug Research Institute, Lucknow, College of Veterinary and Animal Sciences, Pantnagar, and Fraunhofer Institute IPK, Berlin, Germany for FT-IR, SEM analysis, and PHB film specimens, respectively.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10924_2017_1159_MOESM1_ESM.doc (134 kb)
Supplementary material 1 (DOC 134 KB)

References

  1. 1.
    Xiao N, Jiao N (2011) Appl Environ Microbiol 77(21):7445–7450CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Doi Y, Fukuda K (2014) Biodegradable plastics and polymers: proceedings of the third international workshop on biodegradable plastics and polymers. Elsevier, AmsterdamGoogle Scholar
  3. 3.
    Rajaratanam DD, Ariffin H, Hassan MA, Kawasaki Y, Nishida H (2017) Polym Degrad Stab.  https://doi.org/10.1016/j.polymdegradstab.2017.01.007 CrossRefGoogle Scholar
  4. 4.
    Chen GQ (2010) Plastics completely synthesized by bacteria: polyhydroxyalkanoates, vol. 14. Springer, Berlin, pp 17–37CrossRefGoogle Scholar
  5. 5.
    Weng YX, Wang L, Zhang M, Wang XL, Wang YZ (2013) Polym Test 32:60–70CrossRefGoogle Scholar
  6. 6.
    Pachekoski WM, Dalmolin C, Agnelli JAM (2013) Mater Res 16(2):327–332Google Scholar
  7. 7.
    Sznajder A, Pfeiffer D, Jendrossek D (2015) Appl Environ Microbiol 81(5):1847–1858CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wei L, Liang S, McDonald AG (2015) Ind Crop Prod 69:91–103CrossRefGoogle Scholar
  9. 9.
    Bohlmann GM (2005) General characteristics, processability, industrial applications and market evolution of biodegradable polymers. In: Bastioli C (ed) Handbook of biodegradable polymers. Rapra Technology Ltd, Shropshire, pp 183–212Google Scholar
  10. 10.
    Domenek S, Courgneau C, Ducruet V (2011) Characteristics and applications of poly(lactide). In: Kalia S, Averous L (eds) Biopolymers: biomedical and environmental applications. Wiley, Hoboken, pp 183–223CrossRefGoogle Scholar
  11. 11.
    Barghini A, Ivanova VI, Imam SH, Chiellini E (2010) J Polym Sci A 48:5282–5288CrossRefGoogle Scholar
  12. 12.
    Riedel SL, Bader J, Brigham CJ, Budde CF, Yusof ZAM, Rha C, Sinskey AJ (2012) Biotechnol Bioeng 109(1):74–83CrossRefPubMedGoogle Scholar
  13. 13.
    Arrieta MP, Lopez J, Rayon E, Jimenez A (2014) Polym Degrad Stab 108:307–318CrossRefGoogle Scholar
  14. 14.
    Armentano I, Fortunati E, Burgos N, Dominici F, Luzi F, Fiori S, Jiménez A, Yoon K, Ahn J, Kang S, Kenny JM (2015) Express Polym Lett 9(7):583–596CrossRefGoogle Scholar
  15. 15.
    Ren H, Hang Y, Zhai H, Chen J (2015) Cell Chem Technol 49(7–8):641–652Google Scholar
  16. 16.
    Joyyi L, Ahmad Thirmizir MZ, Salim MS, Han L, Murugan P, Kasuya Ki, Maurer FHJ, Zainal Arifin MI, Sudesh K (2017) Polym Degrad Stab.  https://doi.org/10.1016/j.polymdegradstab.2017.01.004 CrossRefGoogle Scholar
  17. 17.
    Pathak S, Sneha CLR, Mathew BB (2014) JPBPC 2(4):84–90Google Scholar
  18. 18.
    Volova TG, Boyandin AN, Vasiliev AD, Karpov VA, Prudnikova SV, Mishukova OV, Boyarskikh UA, Filipenko ML, Rudnev VP, Ba Xuan B, Vit Dung V, Gitelson II (2010) Polym Degrad Stab 95:2350–2359CrossRefGoogle Scholar
  19. 19.
    Woolnough CA, Yee LH, Charlton TS, Foster LJR (2013) PLoS ONE.  https://doi.org/10.1371/journal.pone.0075817 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Volova TG, Boyandin AN, Prudnikova SV (2015) J Siberian Fed Univ Biol 2(8):152–167CrossRefGoogle Scholar
  21. 21.
    Mostafa NA, Farag AA, Abo-dief HM, Tayeb AM (2015) Arab J Chem.  https://doi.org/10.1016/j.arabjc.2015.04.008 CrossRefGoogle Scholar
  22. 22.
    Apinya T, Sombatsompop N, Prapagdee B (2015) Int Biodeterior Biodegrad 99:23–30CrossRefGoogle Scholar
  23. 23.
    Adhikari D, Mukai M, Kubota K, Kai T, Kaneko N (2016) J Agric Chem Environ 5:23–34Google Scholar
  24. 24.
    Nadia A, Gamal AE, Ayad F, Kumar S, Emad Y (2016) SpringerPlus 5:1–12.  https://doi.org/10.1186/s40064-016-2480-2 CrossRefGoogle Scholar
  25. 25.
    Boyandin AN, Prudnikova SV, Karpov VA, Ivonin VN, Ð NL, Nguy n TH, Lê TMH, Filichev NL, Levin AL, Filipenko L, Volova TG, Gitelson II (2013) Int Biodeterior Biodegrad 83:77–84CrossRefGoogle Scholar
  26. 26.
    Emadian SM, Onay TT, Demirel B (2016) Waste Manag.  https://doi.org/10.1016/j.wasman.2016.10.006 CrossRefPubMedGoogle Scholar
  27. 27.
    Knoll M, Hamm TM, Wagner F, Martinez V, Pleiss J (2009) BMC Bioinform 10(89):1–8Google Scholar
  28. 28.
    Nakatsu CH, Torsvik V, Ovrea L (2000) Soil Sci Soc Am J 64:1382–1388CrossRefGoogle Scholar
  29. 29.
    Andrade LL, Leite DCA, Ferreira EM, Ferreira LQ, Paula GR, Maguire MJ, Hubert CRJ, Peixoto RS, Domingues RMCP., Rosado AS (2012) BMC Microbiol 12(186):1–10Google Scholar
  30. 30.
    Suyal DC, Yadav A, Shouche Y, Goel R (2015) Biologia 70:305–313CrossRefGoogle Scholar
  31. 31.
    Accinelli C, Saccà ML, Mencarelli M, Vicari A (2012) Chemosphere 89(2):136–143CrossRefPubMedGoogle Scholar
  32. 32.
    Anstey A, Muniyasamy S, Reddy MM, Misra M, Mohanty A (2014) J Polym Environ 22:209–218CrossRefGoogle Scholar
  33. 33.
    Lipsa R, Tudorachi N, Darie-Nita RN, Oprică L, Vasile C, Chiriac C (2016) Int J Biol Macromol 88:515–526CrossRefPubMedGoogle Scholar
  34. 34.
    Raghuwanshi S, Agarwal T, Yadav A, Zaidi MGH, Souche Y, Goel R (2016) Chem Ecol 32(6):583–597CrossRefGoogle Scholar
  35. 35.
    Goel R, Sah A, Kapri A (2010) DBT, India Patent 213/DEL/2011Google Scholar
  36. 36.
    Negi H, Gupta S, Zaidi MGH, Goel R (2011) Biologija 57(4):141–147CrossRefGoogle Scholar
  37. 37.
    Raghuwanshi S, Negi H, Agarwal T, Zaidi MGH, Goel R (2015) Afr J Microbiol Res 9(24):1558–1572CrossRefGoogle Scholar
  38. 38.
    Zafar U, Houlden A, Robson GD (2013) Appl Environ Microbiol 79(23):7313–7324CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Muyzer G, De Waal EC, Uitterlinden AG (1993) Appl Environ Microbiol 59(3):695–700PubMedPubMedCentralGoogle Scholar
  40. 40.
    Kabir S, Rajendran N, Amemiya T, Itoh K (2003) J Biosci Bioeng 96(4):337–343CrossRefPubMedGoogle Scholar
  41. 41.
    Iwamoto T, Tani K, Nakamura K, Suzuki Y, Kitagawa M, Eguchi M, Nasu M (2000) FEMS Microbiol Ecol 32(2):129–141CrossRefPubMedGoogle Scholar
  42. 42.
    Soni R, Goel R (2010) Ekologija 56(3–4):99–104CrossRefGoogle Scholar
  43. 43.
    Omer A (2010) Life Sci J 7(4):124–131Google Scholar
  44. 44.
    Klayraung S, Viernstein H, Okonogi S (2009) Int J Pharm 370:54–60CrossRefPubMedGoogle Scholar
  45. 45.
    Sandra CP, Rebeca BR (2015) Afr J Biotechnol 14(33):2547–2533CrossRefGoogle Scholar
  46. 46.
    Solanki HK, Shah DA (2016) J Food Process 2016:1–14CrossRefGoogle Scholar
  47. 47.
    Anwar MS, Negi H, Zaidi MGH, Gupta S, Goel R (2013) Braz Arch Biol Technol 56(3):475–484CrossRefGoogle Scholar
  48. 48.
    Phukon P, Saikia JP, Konwar BK (2012) Coll Surf B 92:30–34CrossRefGoogle Scholar
  49. 49.
    Wu CS (2014) J Polym Environ 22(3):384–392CrossRefGoogle Scholar
  50. 50.
    Bayari S, Severcan F (2005) J Mol Struct 744–747:529–534CrossRefGoogle Scholar
  51. 51.
    Conti DS, Yoshida MI, Pezzin SH, Coelho LAF (2006) Thermochim Acta 450(1–2):61–66CrossRefGoogle Scholar
  52. 52.
    Massardier-Nageotte V, Pestre C, Cruard-Pradet T, Bayard R (2006) Polym Degrad Stab 91(3):620–627CrossRefGoogle Scholar
  53. 53.
    Kale G, Kijchavengkul T, Auras R, Rubino M, Selke SE, Singh SP (2007) Macromol Biosci 7(3):255–277CrossRefPubMedGoogle Scholar
  54. 54.
    Marcott C, Dowrey AE, Poppel JV, Noda I (2004) Vib Spectrosc 36:221–225CrossRefGoogle Scholar
  55. 55.
    Fukushima K, Feijoo JL, Yang MC (2012) Polym Degrad Stab 97(11):2347–2355CrossRefGoogle Scholar
  56. 56.
    Anwar MS, Kapri A, Chaudhry V, Mishra A, Ansari MW, Shouche Y, Nautiyal CS, Zaidi MGH, Goel R (2015) Protoplasma 253(4):1023–1032CrossRefPubMedGoogle Scholar
  57. 57.
    Lopez JA, Naranjo JM, Higuita JC, Cubitto JC, Cardona CA, Villar MA (2012) Biotechnol Bioprocess Eng 17(2):250–258CrossRefGoogle Scholar
  58. 58.
    Goncalves S, Franchetti S (2013) Int J Mater Sci 3(2):154–161Google Scholar
  59. 59.
    Kai Z, Ying D, Qiang C (2003) Biochem Eng J 16(2):115–123CrossRefGoogle Scholar
  60. 60.
    Wu CS (2011) J Appl Polym Sci 121(1):427–435CrossRefGoogle Scholar
  61. 61.
    Iordanskii A, Bonartseva G, Pankova Y, Rogovina S (2014) J Inform Intell Knowl 6(4):479-51Google Scholar
  62. 62.
    Arya M, Kumar H, Zaidi MGH, Chauhan A (2013) Fabrication and characterization of graphite/epoxy composites. Proceedings of National Conference TSPC, pp 136–138Google Scholar
  63. 63.
    Herrmann L, Sanon K, Zoubeirou AM (2012) Agric Ecosyst Environ 157:47–53CrossRefGoogle Scholar
  64. 64.
    Babic KH, Schauss K, Hai B (2008) Environ Microbiol 10(11):2922–2930CrossRefPubMedGoogle Scholar
  65. 65.
    Schumpp O, Deakin WJ (2010) Trends Plant Sci 15(4):89–195CrossRefGoogle Scholar
  66. 66.
    Rastogi G, Sani RK (2011) Molecular techniques to assess microbial community structure, function, and dynamics in the environment. In: Ahmad I, Ahmad F, Pichtel J (eds) Microbes and microbial technology. Springer, New York, pp 29–57 Google Scholar
  67. 67.
    Allegrini M, Zabaloy MC, Gomez EDV (2015) Sci Total Environ 533:60–68CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Shikha Raghuwanshi
    • 1
  • M. G. H. Zaidi
    • 2
  • Saurabh Kumar
    • 1
  • Reeta Goel
    • 1
  1. 1.Department of MicrobiologyC.B.S.H., G. B. Pant University of Agriculture and TechnologyPantnagarIndia
  2. 2.Department of ChemistryC.B.S.H., G. B. Pant University of Agriculture and TechnologyPantnagarIndia

Personalised recommendations