Advertisement

Journal of Polymers and the Environment

, Volume 26, Issue 7, pp 2964–2972 | Cite as

Development of Chitosan Membranes as a Potential PEMFC Electrolyte

  • Karine N. Lupatini
  • Jéssica V. Schaffer
  • Bruna Machado
  • Eliane S. Silva
  • Luciana S. N. Ellendersen
  • Graciela I. B. Muniz
  • Ricardo J. Ferracin
  • Helton J. Alves
Original Paper
  • 113 Downloads

Abstract

Commercial chitosan and chitosan extracted from shrimp shells are being used to design membranes to be tested as low cost electrolyte in PEM fuel cells. This study investigated the influence of the deacetylation degree (DD) and molar mass (M V ) of the chitosans used in the composition of membranes on its performance regarding to proton conductivity and other properties. Preliminary results indicate that the chitosan extracted from shrimp shells generated membranes with promising properties such as proton conductivity, which demonstrated to be even a 100 times higher than those shown by commercial chitosan membranes. The significant increase in proton conductivity can be associated with the higher number and availability of amino groups (–NH2) in the chitosan produced in the laboratory, which presents higher DD and lower M V . It is believed that the properties of chitosan can be manipulated in such a way that it would be possible to obtain proton conductivity values closer to that presented by Nafion®.

Keywords

Proton conductivity Biopolymers Hydrogen Renewable energy PEMFC 

Notes

Acknowledgements

The authors gratefully acknowledge PTI Foundation (Brazil) for the financial support and for the granting scholarships (Notice 058/2014 N. 014/2014). We also gratefully Mr. Valdecir Antônio Paganin from University of São Paulo (USP/IQSC) for providing the structure and equipment for the research development.

References

  1. 1.
    Ma J, Sahai Y (2013) Carbohydr Polym 92:955CrossRefPubMedGoogle Scholar
  2. 2.
    Andrade SBM, Ladchumananandasivam R, Nascimento RM (2010) Extração e caracterização de quitina e quitosana e a sua utilização na fabricação de nanofibras. In: V Congresso Nacional de Engenharia Mecânica, Campina Grande, paraíba, 18–21 August 2010Google Scholar
  3. 3.
    Wang C, Wang S, Peng L, Zhang J, Shao Z, Huang J, Sun C, Ouyang M, He X (2016) Rev Energies 9:603CrossRefGoogle Scholar
  4. 4.
    Malis J, Mazúr P, Paidar M, Bystron T, Bouzek K (2016) Int J Hydrog Energy 41:2177CrossRefGoogle Scholar
  5. 5.
    Smitha B, Devi A, Sridhar S (2008) Int J Hydrog Energy 33:4138CrossRefGoogle Scholar
  6. 6.
    Khoshkroodi LG (2010) Polymer electrolyte membrane degradation and mobility in fuel cells: a solid-state NMR investigation. Doctoral Thesis, University of Stuttgart, AlemanhaGoogle Scholar
  7. 7.
    Perles CJ (2008) Rev Polímeros 4:281CrossRefGoogle Scholar
  8. 8.
    Santamaria M, Pecoraro CM, Di Franco F, Di Quarto F, Gatto I, Saccà A (2016) Int J Hydrog Energy 41:5389CrossRefGoogle Scholar
  9. 9.
    Vicentini DS (2009) Effect of inclusion of molecular sieves, polyvinyl alcohol, montmorillonites and titanium dioxide chitosan membranes. Doctoral Thesis, Federal University of Santa Catarina, Florianópolis, BrazilGoogle Scholar
  10. 10.
    Campana-Filho SP, Britto D, Curti E, Abreu FR, Cardoso MB, Battisti MV, Sim PC, Goy RC, Signini R, Lavall RL (2007) Quím Nova 30:644CrossRefGoogle Scholar
  11. 11.
    Bessa-Junior AP, Gonçalves AA (2013) Actapesca 1:13Google Scholar
  12. 12.
    Santos JE, Soares JP, Dockal ER, Campana-Filho SP, Cavalheiro ETG (2003) Rev Polimeros 13:242Google Scholar
  13. 13.
    Arantes MK, Kugelmeier CL, Cardoso-Filho L, Monteiro MR, Oliveira CR, Alves HJ (2015) Polym Eng Sci 55:1969CrossRefGoogle Scholar
  14. 14.
    Tavares IS (2011) Obtenção e caracterização de nanopartículas de quitosana. Dissertation, Master’s in Chemical, Federal University of Rio Grande do Norte, Natal, BrazilGoogle Scholar
  15. 15.
    Osifo PO, Masala A (2012) J Fuel Cell Sci Technol 9:1CrossRefGoogle Scholar
  16. 16.
    Tolaimate A, Desbrieresb J, Rhazia M, Alaguic A (2003) Rev Polym 44:7939CrossRefGoogle Scholar
  17. 17.
    Kassai MR (2007) Carbohydr Polym 68:477CrossRefGoogle Scholar
  18. 18.
    Ribeiro C, Scheufele FB, Espinoza-Quiñones FR, Modenes AN, Silva CMG, Vieira MGA, Borba CE (2015) Physicochem Eng Asp 482:693CrossRefGoogle Scholar
  19. 19.
    Paganin VA, Oliveira CLF, Ticianelli EA, Springer TE, Gonzales ER (1998) Electrochim Acta 43:3761CrossRefGoogle Scholar
  20. 20.
    Aguiar KR, Batalha GP, Peixoto M, Ramos A, Pezzin SH (2012) Rev Polimeros 22:453Google Scholar
  21. 21.
    Amaral IF, Granja PL, Barbosa MA (2005) J Biomater Sci Polym Ed 16:1575CrossRefPubMedGoogle Scholar
  22. 22.
    Oliveira PN, Mendes AMM (2016) Mater Res 19:954CrossRefGoogle Scholar
  23. 23.
    Witt MA, Barra GMO, Bertolino JR, Pires ATN (2010) J Braz Chem Soc 21:1692CrossRefGoogle Scholar
  24. 24.
    Rahman NFA, Loh KS, Mohamad AB, Kadhum AAH, Lim KL (2016) Malays J Anal Sci 20:885CrossRefGoogle Scholar
  25. 25.
    Permana D, Purwanto M, Ramadhan LOAN, Atmaja L (2015) J Chem 15:218Google Scholar
  26. 26.
    Wan Y, Creber KAM, Peppley B, Bui VT (2003) Rev Polym 44:1057CrossRefGoogle Scholar
  27. 27.
    Liu L, Chen W, Li Y (2016) J Membr Sci 504:1CrossRefGoogle Scholar
  28. 28.
    Andrade AB (2008) Desenvolvimento de conjuntos eletrodo-membrana-eletrodo para células a combustível a membrana trocadora de prótons (PEMFC) por impressão à tela. Dissertation, Master’s in Science, University of São Paulo, São Paulo, BrazilGoogle Scholar
  29. 29.
    Matos BR (2008) Preparação e caracterização de eletrólitos compósitos Naion/TiO2 para aplicação em células a combustível de membrana de troca protônica. Dissertation, Master’s in Science, University of São Paulo, São Paulo, BrazilGoogle Scholar
  30. 30.
    Luo Z, Chang Z, Zhang Y, Liu Z, Li J (2010) Int J Hydrog Energy 35:3120CrossRefGoogle Scholar
  31. 31.
    Vijayalekshmi V, Khastgir D (2017) J Membr Sci 523:45CrossRefGoogle Scholar
  32. 32.
    Bispo VM (2009) Estudo do Efeito da Reticulação por Genipin em suportes biocompatíveis de Quitosana-PVA. Doctoral Thesis, Federal University of Minas Gerais, Minas Gerais, BrazilGoogle Scholar
  33. 33.
    Cardoso MT, Carneiro ACO, Oliveira RC, Carvalho AMML, Patrício Júnior W, Martins MC, Santos RC, Silva JC (2012) Cienc Florest 22:403CrossRefGoogle Scholar
  34. 34.
    Carpiné D, Dagostin JLA, Bertan LC, Mafra MR (2015) Food Bioprocess Technol 8:1811CrossRefGoogle Scholar
  35. 35.
    TAPPI—Technical Association of the Pulp & Paper Industry (1997) T 411 om-97—Thickness (caliper) of paper, paperboard, and combined boardGoogle Scholar
  36. 36.
    Cui Z, Xing W, Liu C, Liao J, Zhang H (2008) J Power Sources 188:24CrossRefGoogle Scholar
  37. 37.
    Wang J, Zheng X, Zheng HWB, Jiang Z, Hao X, Wang B (2008) J Power Sources 178:9CrossRefGoogle Scholar
  38. 38.
    Santamaria M, Pecoraro CM, Di Quarto F, Bocchetta P (2015) J Power Sources 276:189CrossRefGoogle Scholar
  39. 39.
    Pecoraro CM, Santamaria M, Bocchetta P, Di Quarto F (2015) Int J Hydrog Energy 40:14616CrossRefGoogle Scholar
  40. 40.
    Vijayalekshmi V, Khastgir D (2018) Energy 142:313CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Karine N. Lupatini
    • 1
    • 2
    • 4
  • Jéssica V. Schaffer
    • 1
  • Bruna Machado
    • 1
  • Eliane S. Silva
    • 1
  • Luciana S. N. Ellendersen
    • 1
  • Graciela I. B. Muniz
    • 1
  • Ricardo J. Ferracin
    • 1
    • 3
  • Helton J. Alves
    • 1
    • 2
  1. 1.Laboratory of Catalysis and Biofuel Production (LabCatProBio)Postgraduate Program in Bioenergy - Federal University of Paraná (UFPR - Setor Palotina)PalotinaBrazil
  2. 2.Postgraduation Program in Engineering of Energy in AgricultureWestern Paraná State UniversityCascavelBrazil
  3. 3.Itaipu Technological Park (PTI)Itaipu BinationalFoz do IguacuBrazil
  4. 4.PitangaBrazil

Personalised recommendations