Skip to main content
Log in

Effects of Aging and Different Mechanical Recycling Processes on the Structure and Properties of Poly(lactic acid)-clay Nanocomposites

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The growing use of poly(lactic acid) (PLA) and PLA-based nanocomposites in packaging has raised the interest of studying the mechanical recycling of the wastes and the properties of the recycled materials. The main objective of this work was to study the effect of two different mechanical recycling processes on the structure and properties of a PLA-montmorillonite nanocomposite. The two recycling processes included accelerated thermal and photochemical aging steps to simulate the degradation experienced by post-consumer plastics during their service life. One of them also included a demanding washing process prior to the reprocessing. A decrease in the molecular weight of PLA was observed in the recycled materials, especially in those subjected to the washing step, which explained the small decrease in microhardness and the increased water uptake at long immersion times. Water absorption at short immersion times was similar in virgin and recycled materials and was accurately described using a Fickian model. The recycled materials showed increased thermal, optical and gas barrier properties due to the improved clay dispersion that was observed by XRD and TEM analysis. The results suggest that recycled PLA-clay nanocomposites can be used in demanding applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Beltrán FR, Lorenzo V, Acosta J, de la Orden MU, Martínez Urreaga J (in press) J Environ Manag

  2. Badia JD, Santonja-Blasco L, Martínez-Felipe A, Ribes-Greus A (2012) Polym Degrad Stab 97:1881

    Article  CAS  Google Scholar 

  3. Auras R, Lim L, Selke S. E. M., Tsuji H (2010) Poly(lactic acid): synthesis, structures, properties, processing, and applications. Wiley, New Jersey

    Book  Google Scholar 

  4. Raquez J, Habibi Y, Murariu M, Dubois P (2013) Prog Polym Sci 38:1504

    Article  CAS  Google Scholar 

  5. Rhim J, Park H, Ha C (2013) Prog Polym Sci 38:1629

    Article  CAS  Google Scholar 

  6. Souza PMS, Morales AR, Marin-Morales M, Mei LHI (2013) J Polym Environ 21:738

    Article  Google Scholar 

  7. Aeschelmann F, Carus M (2015) Ind Biotechnol 11:154

    Article  Google Scholar 

  8. Reddy MM, Vivekanandhan S, Misra M, Bhatia SK, Mohanty AK (2013) Prog Polym Sci 38:1653

    Article  CAS  Google Scholar 

  9. Leejarkpai T, Mungcharoen T, Suwanmanee U (2016) J Clean Prod 125:95

    Article  CAS  Google Scholar 

  10. Mülhaupt R (2013) Macromol Chem Phys 214:159

    Article  Google Scholar 

  11. Piemonte V (2011) J Polym Environ 19:988

    Article  CAS  Google Scholar 

  12. Cosate de Andrade MF, Souza PMS, Cavalett O, Morales AR (2016) J Polym Environ 24:372

    Article  CAS  Google Scholar 

  13. Rossi V, Cleeve-Edwards N, Lundquist L, Schenker U, Dubois C, Humbert S, Jolliet O (2015) J Clean Prod 86:132

    Article  Google Scholar 

  14. Niaounakis M (2013) Biopolymers reuse, recycling, and disposal. William Andrew Publishing, Oxford

    Google Scholar 

  15. Badia JD, Ribes-Greus A (2016) Eur Polym J 84:22

    Article  CAS  Google Scholar 

  16. Badia JD, Gil-Castell O, Ribes-Greus A (2017) Polym Degrad Stab 137:35

    Article  CAS  Google Scholar 

  17. Scaffaro R, Morreale M, Mirabella F, La Mantia FP (2011) Macromol Mater Eng 296:141

    Article  CAS  Google Scholar 

  18. Badia JD, Strömberg E, Karlsson S, Ribes-Greus A (2012) Polym Degrad Stab 97:670

    Article  CAS  Google Scholar 

  19. Żenkiewicz M, Richert J, Rytlewski P, Moraczewski K, Stepczyńska M, Karasiewicz T (2009) Polym Test 28:412

    Article  Google Scholar 

  20. Nascimento L, Gamez-Perez J, Santana OO, Velasco JI, Maspoch ML, Franco-Urquiza E (2010) J Polym Environ 18:654

    Article  CAS  Google Scholar 

  21. Beltrán FR, Lorenzo V, de la Orden MU, Martínez-Urreaga J (2016) Polym Degrad Stab 133:339

    Article  Google Scholar 

  22. Kozlowski MA, Macyszyn J (2013) In: Silvestre C, Cimmino S (eds) Recycling of nanocomposites in: polymer nanomaterials for food packaging. CRC Press, Florida, pp 313–336

    Google Scholar 

  23. Scaffaro R, Sutera F, Mistretta MC, Botta L, La Mantia FP (2017) Express Polym Lett 11:555

    Article  CAS  Google Scholar 

  24. Chariyachotilert C, Joshi S, Selke SEM, Auras R (2012) J Plast Film Sheeting 28:314

    Article  Google Scholar 

  25. Kraemer EO (1938) Ind Eng Chem 30:1200

    Article  CAS  Google Scholar 

  26. Arranz-Andrés J, Lorenzo V, de la Orden MU, Pérez E, Cerrada ML (2011) J Membr Sci 377:141

    Article  Google Scholar 

  27. Rutherford SW, Do DD (1997) Adsorption 3:283

    Article  CAS  Google Scholar 

  28. Le Marec PE, Ferry L, Quantin J, Bénézet J, Bonfils F, Guilbert S, Bergeret A (2014) Polym Degrad Stab 110:353

    Article  Google Scholar 

  29. Pluta M, Jeszka JK, Boiteux G (2007) Eur Polym J 43:2819

    Article  CAS  Google Scholar 

  30. Di Lorenzo ML (2006) J Appl Polym Sci 100:3145

    Article  Google Scholar 

  31. Yasuniwa M, Tsubakihara S, Sugimoto Y, Nakafuku C (2004) J Polym Sci B Polym Phys 42:25

    Article  CAS  Google Scholar 

  32. Cele HM, Ojijo V, Chen H, Kumar S, Land K, Joubert T, de Villiers MFR, Ray SS (2014) Polym Test 36:24

    Article  CAS  Google Scholar 

  33. Pillin I, Montrelay N, Bourmaud A, Grohens Y (2008) Polym Degrad Stab 93:321

    Article  CAS  Google Scholar 

  34. Lorenzo V, Pereña JM (1999) Curr Trends Polym Sci 4:65–76

    CAS  Google Scholar 

  35. Cohen MH, Turnbull D (1959) J Chem Phys 31:1164

    Article  CAS  Google Scholar 

  36. Balart JF, Montanes N, Fombuena V, Boronat T, Sánchez-Nacher L (2017) J Polym Environ 1

  37. Davis EM, Theryo G, Hillmyer MA, Cairncross RA, Elabd YA (2011) ACS Appl Mater Interfaces 3:3997

    Article  CAS  Google Scholar 

  38. Deroiné M, Le Duigou A, Corre Y, Le Gac P, Davies P, César G, Bruzaud S (2014) Polym Degrad Stab 108:319

    Article  Google Scholar 

  39. Crank J (1975) The mathematics of diffusion. Clarendon Press, Oxford

    Google Scholar 

  40. Gupta KM, Pawar SJ (2005) Mater Sci Eng 412:78

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Centro Nacional de Microscopía Electrónica and the CAI Difracción de Rayos X of the Universidad Complutense de Madrid (Spain), for the collaboration in the TEM and XRD measurements, respectively. The authors also would like to acknowledge the funding from MINECO-Spain (project MAT2013-47972-C2-2-P), Universidad Politécnica de Madrid (project UPM RP 160543006) and Ecoembes (project DEHIPLA-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. R. Beltrán.

Additional information

Data availability: The datasets analyzed during the current study are available from the corresponding author on reasonable request.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beltrán, F.R., Ortega, E., Solvoll, A.M. et al. Effects of Aging and Different Mechanical Recycling Processes on the Structure and Properties of Poly(lactic acid)-clay Nanocomposites. J Polym Environ 26, 2142–2152 (2018). https://doi.org/10.1007/s10924-017-1117-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1117-z

Keywords

Navigation