Journal of Polymers and the Environment

, Volume 26, Issue 5, pp 2182–2191 | Cite as

Chitosan–Starch–Keratin Composites: Improving Thermo-Mechanical and Degradation Properties Through Chemical Modification

  • Cynthia G. Flores-Hernández
  • Arturo Colin-Cruz
  • Carlos Velasco-Santos
  • Víctor M. Castaño
  • Armando Almendarez-Camarillo
  • Imelda Olivas-Armendariz
  • Ana L. Martínez-Hernández
Original Paper


Chitosan–starch polymers are reinforced with different keratin materials obtained from chicken feather. Keratin materials are treated with sodium hydroxide; the modified surfaces are rougher in comparison with untreated surfaces, observed by Scanning Electron Microscopy. The results obtained by Differential Scanning Calorimetry show an increase in the endothermic peak related to water evaporation of the films from 92 °C (matrix) up to 102–114 °C (reinforced composites). Glass transition temperature increases from 126 °C in the polymer matrix up to 170–200 °C for the composites. Additionally, the storage modulus in the composites is enhanced up to 1614% for the composites with modified ground quill, 2522% for composites with modified long fiber and 3206% for the composites with modified short fiber. The lysozyme test shows an improved in the degradability rate, the weight loss of the films at 21 days is reduced from 73% for chitosan-starch matrix up to 16% for the composites with 5 wt% of quill; but all films show a biodegradable character depending on keratin type and chemical modification. The outstanding properties related to the addition of treated keratin materials show that these natural composites are a remarkable alternative to potentiating chitosan–starch films with sustainable features.


Chemical modification Keratin Chicken feather Sodium hydroxide Biopolymer composite 



The authors are grateful to Mrs. Alicia del Real-Lopez for her technical assistance with SEM micrographs, to Dr. Pedro Salas for technical support and Mrs. Carmen Vazquez for assistance in stress tests of the composites (useful to SEM). Also, C.G. Flores-Hernandez thanks Consejo Nacional de Ciencia y Tecnología (CONACyT), Mexico, for financial support through the Ph. D. scholarship. Martinez-Hernandez and Velasco-Santos also express their gratitude for the economic support provided by Tecnológico Nacional de México and Instituto Tecnológico de Querétaro through the projects 2499.09-P and QRO-IMA-2012-103, respectively.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10924_2017_1115_MOESM1_ESM.docx (2.9 mb)
Supplementary material 1 (DOCX 2957 KB)


  1. 1.
    Vilaseca F, Mendez JA, Pelach A, Llop M, Cañigueral N, Girones J, Turon X, Mutje P (2007) Process Biochem 42:329–334CrossRefGoogle Scholar
  2. 2.
    Xu H, Yan Y (2014) ACS Sustain Chem Eng 2:1404–1410CrossRefGoogle Scholar
  3. 3.
    Shi Z, Reddy N, Hou X, Yang Y (2014) ACS Sustain Chem Eng 2:1849–1856CrossRefGoogle Scholar
  4. 4.
    Wool RP, Sun XS (2005) Bio-based polymers and composites. Elsevier Academic Press, LondonGoogle Scholar
  5. 5.
    O´Donnell A, Dweib MA, Wool RP (2004) Compos Sci Technol 64:1135–1145CrossRefGoogle Scholar
  6. 6.
    Shenton III HW, Wool RP, Hu B, O’Donnell A, Bonnaillie L, Can E, Chapas R, Hong C (2002) Adv Build Technol 1:255–262CrossRefGoogle Scholar
  7. 7.
    Dweib MA, Hu B, Shenton III HW, Wool RP (2006) Compos Struct 74:379–388CrossRefGoogle Scholar
  8. 8.
    Hinchcliffe SA, Hess KM, Srubar III WV (2016) Compos B 95:346–354CrossRefGoogle Scholar
  9. 9.
    Castro DO, Passador F, Ruvolo-Filho A, Frollini E (2017) Compos A 95:22–30CrossRefGoogle Scholar
  10. 10.
    Khan Z, Yousif BF, Islam M (2017) Compos B 116:186–199CrossRefGoogle Scholar
  11. 11.
    Goda K, Sreekala MS, Gomes A, Kaji T, Ohgi J (2006) Compos A 37:2213–2220CrossRefGoogle Scholar
  12. 12.
    Joseph S, Oommen Z, Thomas S (2006) J Appl Polym Sci 100:2521–2531CrossRefGoogle Scholar
  13. 13.
    Bambach MR (2017) Thin-Walled Struct 119:103–113CrossRefGoogle Scholar
  14. 14.
    Li X, Tabil LG, Panigrahi S (2007) J Polym Environ 15:25–33CrossRefGoogle Scholar
  15. 15.
    Cao Y, Shibata S, Fukumoto I (2006) Compos A 37:423–429CrossRefGoogle Scholar
  16. 16.
    Avella M, Buzarovska A, Errico ME, Gentile G, Grozdanov A (2009) Materials 2:911–925CrossRefGoogle Scholar
  17. 17.
    Chang WP, Kim KJ, Gupta RK (2009) Compos Interface 16:937–951CrossRefGoogle Scholar
  18. 18.
    Farsi M (2012) In: Wang J (ed) Some critical issues for injection molding. InTech, RijekaGoogle Scholar
  19. 19.
    Anike DC, Onuegbu TU, Ogbu IM, Alaekwe IO (2014) Am J Polym Sci 4:117–121Google Scholar
  20. 20.
    Kabir MM, Wang H, Lau KT, Cardona F (2012) Compos B 43:2883–2892CrossRefGoogle Scholar
  21. 21.
    Calado V, Barreto DW, D’Almeida JRM (2000) J Mater Sci Lett 19:2151–2153CrossRefGoogle Scholar
  22. 22.
    Zheng YT, Cao DR, Wang DS, Chen JJ (2007) Compos A 38:20–25CrossRefGoogle Scholar
  23. 23.
    Idicula M, Boudenne A, Umadevi L, Bos L, Candau Y, Thomas S (2006) Compos Sci Technol 66:2719–2725CrossRefGoogle Scholar
  24. 24.
    Ray D, Rana AK, Bose NR, Sengupta SP (2005) J Appl Polym Sci 98:557–563CrossRefGoogle Scholar
  25. 25.
    Sreekala MS, Thomas S (2003) Compos Sci Technol 63:861–869CrossRefGoogle Scholar
  26. 26.
    Martins MA, Forato LA, Mattoso LHC, Colnago LA (2006) Carbohyd Polym 64:127–133CrossRefGoogle Scholar
  27. 27.
    Keener TJ, Stuart RK, Brown TK. (2004) Compos A 35:357–362CrossRefGoogle Scholar
  28. 28.
    Li X, Panigrahi SA, Tabil LG, Crerar WJ (2004) The society for engineering in agricultural, food, and biological systems. In: 2004 CSAE/ASAE Annual Intersectional Meeting, paper Number MB04–305Google Scholar
  29. 29.
    John MJ, Anandjiwala RD (2008) Polym Compos 29:187–207CrossRefGoogle Scholar
  30. 30.
    Jimenez-Cervantes Amieva E, Velasco-Santos C, Martinez-Hernandez AL, Rivera-Armenta JL, Mendoza-Martinez AM, Castaño VM (2014) J Compos Mater 9:1–9Google Scholar
  31. 31.
    Dweib MA, Hu B, O´Donnell A, Shenton HW, Wool RP (2004) Compos Struct 63:147–157CrossRefGoogle Scholar
  32. 32.
    Hong CK, Wool RP (2005) J Appl Polym Sci 95:1524–1538CrossRefGoogle Scholar
  33. 33.
    Martinez-Hernandez AL, Velasco-Santos C (2011) In: Dullart R, Mousques J (eds) Keratin: structure, properties and applications. Nova Science Publishers, Inc., HauppaugeGoogle Scholar
  34. 34.
    Cheng S, Lau K, Liu T, Yongqing Z, Lam P, Yin Y (2009) Compos B 40:650–654CrossRefGoogle Scholar
  35. 35.
    Barone JR (2009) J Polym Environ 17:143–151CrossRefGoogle Scholar
  36. 36.
    Ozmen U, Baba BO (2017) J Therm Anal Calorim 129:347–355CrossRefGoogle Scholar
  37. 37.
    Flores-Hernandez CG, Colin-Cruz A, Velasco-Santos C, Castaño VM, Rivera-Armenta JL, Almendarez-Camarillo A, Garcia-Casillas PE, Martinez-Hernandez AL (2014) Polymers 6:686–705CrossRefGoogle Scholar
  38. 38.
    Rodriguez-Gonzalez C, Martinez-Hernandez AL, Castaño VM, Kharissova OV, Ruoff RS, Velasco-Santos C (2012) Ind Eng Chem Res 51:3619–3629CrossRefGoogle Scholar
  39. 39.
    Martinez-Hernandez AL, Velasco-Santos C, de-Icaza M, Castaño VM (2007) Compos B, 38:405–410CrossRefGoogle Scholar
  40. 40.
    Reddy N, Yang Y (2007) J Polym Environ 15:81–87CrossRefGoogle Scholar
  41. 41.
    Martinez-Hernandez AL, Velasco-Santos C, de-Icaza M, Castaño VM (2005) Int J Environ Pollut 23:162–178CrossRefGoogle Scholar
  42. 42.
    Das M, Chakraborty D (2006) J Appl Polym Sci 102:5050–5056CrossRefGoogle Scholar
  43. 43.
    Van de Weyenberg I, Truong TC, Vangrimde B, Verpoest I (2006) Compos A 37:1368–1376CrossRefGoogle Scholar
  44. 44.
    Pickering KL, Beckermann GW, Alam SN, Foreman NJ (2007) Compos A 38:461–468CrossRefGoogle Scholar
  45. 45.
    Aziz SH, Ansell MP (2004) Compos Sci Technol 64:1219–1230CrossRefGoogle Scholar
  46. 46.
    Wunderlich B (2005) Thermal analysis of polymeric materials. Springer, New YorkGoogle Scholar
  47. 47.
    Khosa MA, Ullah A (2014) J Hazard Mater 278:360–371CrossRefGoogle Scholar
  48. 48.
    Ullah A, Wu J (2013) Macromol Mater Eng 298:153–162CrossRefGoogle Scholar
  49. 49.
    Colucci G, Aluigi A, Tonin C, Bongiovanni R (2014) Prog Org Coat 77:1104–1110CrossRefGoogle Scholar
  50. 50.
    Brebu M, Spiridon I (2011) J Anal Appl Pyrol 91:288–295CrossRefGoogle Scholar
  51. 51.
    Park M, Shin HK, Panthi G, Rabbani MM, Alam AM, Choi J, Chung HJ, Hong ST, Kim HY (2015) Int J Biol Macromol 76:45–48CrossRefGoogle Scholar
  52. 52.
    Zhang Q, Shan G, Cao P, He J, Lin Z, Huang Y, Ao N (2015) Mat Sci Eng C 47:123–134CrossRefGoogle Scholar
  53. 53.
    Mathew S, Brahmakumar M, Abraham TE (2006) Biopolymers 82:176–187CrossRefGoogle Scholar
  54. 54.
    Goulart SG, De Souza DA, Machado JC, Hourston DJ (2000) J Appl Polym Sci 76:1197–1206CrossRefGoogle Scholar
  55. 55.
    Balaji S, Kumar R, Sripriya R, Kakkar P, Vijaya Ramesh D (2012) Mat Sci Eng C 32:975–982CrossRefGoogle Scholar
  56. 56.
    Sreekala MS, Kumaran MG, Thomas S (1997) J Appl Polym Sci 66:821–835CrossRefGoogle Scholar
  57. 57.
    Menard KP (2008) Dynamic mechanical analysis: a practical introduction, 2nd edn. CRC Press, Boca RatonCrossRefGoogle Scholar
  58. 58.
    Brostow W, Hagg Lobland HE, Narkis M (2011) Polym Bull 67:1697–1707CrossRefGoogle Scholar
  59. 59.
    Pothan LA, Thomas S, Groeninckx G (2006) Compos A 37:1260–1269CrossRefGoogle Scholar
  60. 60.
    Jacob M, Francis B, Thomas S, Varughese KT (2006) Polym Compos 27:671–680CrossRefGoogle Scholar
  61. 61.
    Kalogeras IM, Hagg Lobland HE (2012) J Mater Educ 34:69–94Google Scholar
  62. 62.
    Brostow W, Chiu R, Kalogeras IM, Vassilikou-Dova A (2008) Mater Lett 62:3152–3155CrossRefGoogle Scholar
  63. 63.
    Lazaridou A, Biliaderis CG (2002) Carbohyd Polym 48:179–190CrossRefGoogle Scholar
  64. 64.
    Mitrus M (2005) Int Agrophys 19:237–241Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Cynthia G. Flores-Hernández
    • 1
    • 2
  • Arturo Colin-Cruz
    • 1
  • Carlos Velasco-Santos
    • 2
  • Víctor M. Castaño
    • 3
  • Armando Almendarez-Camarillo
    • 4
  • Imelda Olivas-Armendariz
    • 5
  • Ana L. Martínez-Hernández
    • 2
  1. 1.Facultad de QuímicaUniversidad Autónoma del Estado de MéxicoTolucaMexico
  2. 2.División de Estudios de Posgrado e InvestigaciónTecnológico Nacional de México, Instituto Tecnológico de QuerétaroQuerétaroMexico
  3. 3.Departamento de Ingeniería Molecular de Materiales, Centro de Física Aplicada y Tecnología AvanzadaUniversidad Nacional Autónoma de MéxicoQuerétaroMexico
  4. 4.Departamento de Ingeniería QuímicaTecnologico Nacional de México, Instituto Tecnológico de CelayaGuanajuatoMexico
  5. 5.Instituto de Ingeniería y TecnologíaUniversidad Autónoma de Cd. JuárezCd. JuarezMexico

Personalised recommendations