Skip to main content
Log in

Chitosan–Starch–Keratin Composites: Improving Thermo-Mechanical and Degradation Properties Through Chemical Modification

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Chitosan–starch polymers are reinforced with different keratin materials obtained from chicken feather. Keratin materials are treated with sodium hydroxide; the modified surfaces are rougher in comparison with untreated surfaces, observed by Scanning Electron Microscopy. The results obtained by Differential Scanning Calorimetry show an increase in the endothermic peak related to water evaporation of the films from 92 °C (matrix) up to 102–114 °C (reinforced composites). Glass transition temperature increases from 126 °C in the polymer matrix up to 170–200 °C for the composites. Additionally, the storage modulus in the composites is enhanced up to 1614% for the composites with modified ground quill, 2522% for composites with modified long fiber and 3206% for the composites with modified short fiber. The lysozyme test shows an improved in the degradability rate, the weight loss of the films at 21 days is reduced from 73% for chitosan-starch matrix up to 16% for the composites with 5 wt% of quill; but all films show a biodegradable character depending on keratin type and chemical modification. The outstanding properties related to the addition of treated keratin materials show that these natural composites are a remarkable alternative to potentiating chitosan–starch films with sustainable features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vilaseca F, Mendez JA, Pelach A, Llop M, Cañigueral N, Girones J, Turon X, Mutje P (2007) Process Biochem 42:329–334

    Article  CAS  Google Scholar 

  2. Xu H, Yan Y (2014) ACS Sustain Chem Eng 2:1404–1410

    Article  CAS  Google Scholar 

  3. Shi Z, Reddy N, Hou X, Yang Y (2014) ACS Sustain Chem Eng 2:1849–1856

    Article  CAS  Google Scholar 

  4. Wool RP, Sun XS (2005) Bio-based polymers and composites. Elsevier Academic Press, London

    Google Scholar 

  5. O´Donnell A, Dweib MA, Wool RP (2004) Compos Sci Technol 64:1135–1145

    Article  Google Scholar 

  6. Shenton III HW, Wool RP, Hu B, O’Donnell A, Bonnaillie L, Can E, Chapas R, Hong C (2002) Adv Build Technol 1:255–262

    Article  Google Scholar 

  7. Dweib MA, Hu B, Shenton III HW, Wool RP (2006) Compos Struct 74:379–388

    Article  Google Scholar 

  8. Hinchcliffe SA, Hess KM, Srubar III WV (2016) Compos B 95:346–354

    Article  CAS  Google Scholar 

  9. Castro DO, Passador F, Ruvolo-Filho A, Frollini E (2017) Compos A 95:22–30

    Article  CAS  Google Scholar 

  10. Khan Z, Yousif BF, Islam M (2017) Compos B 116:186–199

    Article  CAS  Google Scholar 

  11. Goda K, Sreekala MS, Gomes A, Kaji T, Ohgi J (2006) Compos A 37:2213–2220

    Article  Google Scholar 

  12. Joseph S, Oommen Z, Thomas S (2006) J Appl Polym Sci 100:2521–2531

    Article  CAS  Google Scholar 

  13. Bambach MR (2017) Thin-Walled Struct 119:103–113

    Article  Google Scholar 

  14. Li X, Tabil LG, Panigrahi S (2007) J Polym Environ 15:25–33

    Article  Google Scholar 

  15. Cao Y, Shibata S, Fukumoto I (2006) Compos A 37:423–429

    Article  Google Scholar 

  16. Avella M, Buzarovska A, Errico ME, Gentile G, Grozdanov A (2009) Materials 2:911–925

    Article  CAS  Google Scholar 

  17. Chang WP, Kim KJ, Gupta RK (2009) Compos Interface 16:937–951

    Article  CAS  Google Scholar 

  18. Farsi M (2012) In: Wang J (ed) Some critical issues for injection molding. InTech, Rijeka

    Google Scholar 

  19. Anike DC, Onuegbu TU, Ogbu IM, Alaekwe IO (2014) Am J Polym Sci 4:117–121

    CAS  Google Scholar 

  20. Kabir MM, Wang H, Lau KT, Cardona F (2012) Compos B 43:2883–2892

    Article  CAS  Google Scholar 

  21. Calado V, Barreto DW, D’Almeida JRM (2000) J Mater Sci Lett 19:2151–2153

    Article  CAS  Google Scholar 

  22. Zheng YT, Cao DR, Wang DS, Chen JJ (2007) Compos A 38:20–25

    Article  Google Scholar 

  23. Idicula M, Boudenne A, Umadevi L, Bos L, Candau Y, Thomas S (2006) Compos Sci Technol 66:2719–2725

    Article  CAS  Google Scholar 

  24. Ray D, Rana AK, Bose NR, Sengupta SP (2005) J Appl Polym Sci 98:557–563

    Article  CAS  Google Scholar 

  25. Sreekala MS, Thomas S (2003) Compos Sci Technol 63:861–869

    Article  CAS  Google Scholar 

  26. Martins MA, Forato LA, Mattoso LHC, Colnago LA (2006) Carbohyd Polym 64:127–133

    Article  CAS  Google Scholar 

  27. Keener TJ, Stuart RK, Brown TK. (2004) Compos A 35:357–362

    Article  Google Scholar 

  28. Li X, Panigrahi SA, Tabil LG, Crerar WJ (2004) The society for engineering in agricultural, food, and biological systems. In: 2004 CSAE/ASAE Annual Intersectional Meeting, paper Number MB04–305

  29. John MJ, Anandjiwala RD (2008) Polym Compos 29:187–207

    Article  CAS  Google Scholar 

  30. Jimenez-Cervantes Amieva E, Velasco-Santos C, Martinez-Hernandez AL, Rivera-Armenta JL, Mendoza-Martinez AM, Castaño VM (2014) J Compos Mater 9:1–9

    Google Scholar 

  31. Dweib MA, Hu B, O´Donnell A, Shenton HW, Wool RP (2004) Compos Struct 63:147–157

    Article  Google Scholar 

  32. Hong CK, Wool RP (2005) J Appl Polym Sci 95:1524–1538

    Article  CAS  Google Scholar 

  33. Martinez-Hernandez AL, Velasco-Santos C (2011) In: Dullart R, Mousques J (eds) Keratin: structure, properties and applications. Nova Science Publishers, Inc., Hauppauge

    Google Scholar 

  34. Cheng S, Lau K, Liu T, Yongqing Z, Lam P, Yin Y (2009) Compos B 40:650–654

    Article  Google Scholar 

  35. Barone JR (2009) J Polym Environ 17:143–151

    Article  CAS  Google Scholar 

  36. Ozmen U, Baba BO (2017) J Therm Anal Calorim 129:347–355

    Article  CAS  Google Scholar 

  37. Flores-Hernandez CG, Colin-Cruz A, Velasco-Santos C, Castaño VM, Rivera-Armenta JL, Almendarez-Camarillo A, Garcia-Casillas PE, Martinez-Hernandez AL (2014) Polymers 6:686–705

    Article  Google Scholar 

  38. Rodriguez-Gonzalez C, Martinez-Hernandez AL, Castaño VM, Kharissova OV, Ruoff RS, Velasco-Santos C (2012) Ind Eng Chem Res 51:3619–3629

    Article  CAS  Google Scholar 

  39. Martinez-Hernandez AL, Velasco-Santos C, de-Icaza M, Castaño VM (2007) Compos B, 38:405–410

    Article  Google Scholar 

  40. Reddy N, Yang Y (2007) J Polym Environ 15:81–87

    Article  CAS  Google Scholar 

  41. Martinez-Hernandez AL, Velasco-Santos C, de-Icaza M, Castaño VM (2005) Int J Environ Pollut 23:162–178

    Article  CAS  Google Scholar 

  42. Das M, Chakraborty D (2006) J Appl Polym Sci 102:5050–5056

    Article  CAS  Google Scholar 

  43. Van de Weyenberg I, Truong TC, Vangrimde B, Verpoest I (2006) Compos A 37:1368–1376

    Article  Google Scholar 

  44. Pickering KL, Beckermann GW, Alam SN, Foreman NJ (2007) Compos A 38:461–468

    Article  Google Scholar 

  45. Aziz SH, Ansell MP (2004) Compos Sci Technol 64:1219–1230

    Article  CAS  Google Scholar 

  46. Wunderlich B (2005) Thermal analysis of polymeric materials. Springer, New York

    Google Scholar 

  47. Khosa MA, Ullah A (2014) J Hazard Mater 278:360–371

    Article  CAS  Google Scholar 

  48. Ullah A, Wu J (2013) Macromol Mater Eng 298:153–162

    Article  CAS  Google Scholar 

  49. Colucci G, Aluigi A, Tonin C, Bongiovanni R (2014) Prog Org Coat 77:1104–1110

    Article  CAS  Google Scholar 

  50. Brebu M, Spiridon I (2011) J Anal Appl Pyrol 91:288–295

    Article  CAS  Google Scholar 

  51. Park M, Shin HK, Panthi G, Rabbani MM, Alam AM, Choi J, Chung HJ, Hong ST, Kim HY (2015) Int J Biol Macromol 76:45–48

    Article  CAS  Google Scholar 

  52. Zhang Q, Shan G, Cao P, He J, Lin Z, Huang Y, Ao N (2015) Mat Sci Eng C 47:123–134

    Article  CAS  Google Scholar 

  53. Mathew S, Brahmakumar M, Abraham TE (2006) Biopolymers 82:176–187

    Article  CAS  Google Scholar 

  54. Goulart SG, De Souza DA, Machado JC, Hourston DJ (2000) J Appl Polym Sci 76:1197–1206

    Article  Google Scholar 

  55. Balaji S, Kumar R, Sripriya R, Kakkar P, Vijaya Ramesh D (2012) Mat Sci Eng C 32:975–982

    Article  CAS  Google Scholar 

  56. Sreekala MS, Kumaran MG, Thomas S (1997) J Appl Polym Sci 66:821–835

    Article  CAS  Google Scholar 

  57. Menard KP (2008) Dynamic mechanical analysis: a practical introduction, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  58. Brostow W, Hagg Lobland HE, Narkis M (2011) Polym Bull 67:1697–1707

    Article  CAS  Google Scholar 

  59. Pothan LA, Thomas S, Groeninckx G (2006) Compos A 37:1260–1269

    Article  Google Scholar 

  60. Jacob M, Francis B, Thomas S, Varughese KT (2006) Polym Compos 27:671–680

    Article  CAS  Google Scholar 

  61. Kalogeras IM, Hagg Lobland HE (2012) J Mater Educ 34:69–94

    CAS  Google Scholar 

  62. Brostow W, Chiu R, Kalogeras IM, Vassilikou-Dova A (2008) Mater Lett 62:3152–3155

    Article  CAS  Google Scholar 

  63. Lazaridou A, Biliaderis CG (2002) Carbohyd Polym 48:179–190

    Article  CAS  Google Scholar 

  64. Mitrus M (2005) Int Agrophys 19:237–241

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mrs. Alicia del Real-Lopez for her technical assistance with SEM micrographs, to Dr. Pedro Salas for technical support and Mrs. Carmen Vazquez for assistance in stress tests of the composites (useful to SEM). Also, C.G. Flores-Hernandez thanks Consejo Nacional de Ciencia y Tecnología (CONACyT), Mexico, for financial support through the Ph. D. scholarship. Martinez-Hernandez and Velasco-Santos also express their gratitude for the economic support provided by Tecnológico Nacional de México and Instituto Tecnológico de Querétaro through the projects 2499.09-P and QRO-IMA-2012-103, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana L. Martínez-Hernández.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2957 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flores-Hernández, C.G., Colin-Cruz, A., Velasco-Santos, C. et al. Chitosan–Starch–Keratin Composites: Improving Thermo-Mechanical and Degradation Properties Through Chemical Modification. J Polym Environ 26, 2182–2191 (2018). https://doi.org/10.1007/s10924-017-1115-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1115-1

Keywords

Navigation