Advertisement

Journal of Polymers and the Environment

, Volume 26, Issue 5, pp 2166–2172 | Cite as

Aqueous Removal of Sodium Dodecyl Benzene Sulfonate (SDBS) by Crosslinked Chitosan Films

  • Nilay Kahya
  • Hakan Kaygusuz
  • F. Bedia Erim
Original Paper

Abstract

Uncontrolled pollution of surfactants to the environment is an important problem nowadays. In this study, anionic charged surfactant sodium dodecyl benzene sulfonate (SDBS) was chosen as a model surfactant for removal studies. Biopolymer based, crosslinked chitosan films were used for the aqueous removal of SDBS. Sodium sulfate was selected as the crosslinker. Batch adsorption studies show that positively charged chitosan has an affinity towards negatively charged surfactant SDBS. Adsorption parameters such as the effect of contact time, pH, crosslinker concentration, and adsorbent dose were investigated during experimental studies. The maximum amount of adsorbed SDBS was reached at pH 2 and at 180 min. Experimental data were modeled using kinetic and isothermal models, and the system was found to be following pseudo-second order kinetics. Significantly high adsorption capacity of films (q m ) for SDBS was found as 714 mg/g. This study suggests a potential use of crosslinked chitosan films for the removal of anionic surfactants from aquatic media.

Keywords

Adsorption Chitosan Biopolymer Surfactant Removal Pollution 

References

  1. 1.
    Ivanković T, Hrenović J (2010) Surfactants in the environment. Arch Ind Hyg Toxicol 61:95–110. doi: 10.2478/10004-1254-61-2010-1943 Google Scholar
  2. 2.
    Zhang L, Liu Y, Wang S et al (2015) Selective removal of cationic dyes from aqueous solutions by an activated carbon-based multicarboxyl adsorbent. RSC Adv 5:99618–99626. doi: 10.1039/C5RA18093G CrossRefGoogle Scholar
  3. 3.
    Zhang L, Liu Y, Wang S et al (2017) The removal of sodium dodecyl benzene sulfonate by activated carbon modified with quaternary ammonium from aqueous solution. J Porous Mater 24:65–73. doi: 10.1007/s10934-016-0238-4 CrossRefGoogle Scholar
  4. 4.
    Hozhabr Araghi S, Entezari MH (2015) Amino-functionalized silica magnetite nanoparticles for the simultaneous removal of pollutants from aqueous solution. Appl Surf Sci 333:68–77. doi: 10.1016/j.apsusc.2015.01.211 CrossRefGoogle Scholar
  5. 5.
    Özdemir U, Özbay B, Veli S, Zor S (2011) Modeling adsorption of sodium dodecyl benzene sulfonate (SDBS) onto polyaniline (PANI) by using multi linear regression and artificial neural networks. Chem Eng J 178:183–190. doi: 10.1016/j.cej.2011.10.046 CrossRefGoogle Scholar
  6. 6.
    Kaygusuz H, Uzaşçı S, Erim FB (2015) Removal of fluoride from aqueous solution using aluminum alginate beads. CLEAN–Soil Air Water 43:724–730. doi: 10.1002/clen.201300632 CrossRefGoogle Scholar
  7. 7.
    Kaygusuz H, Çoşkunirmak MH, Kahya N, Erim FB (2015) Aluminum alginate-montmorillonite composite beads for defluoridation of water. Water Air Soil Pollut. doi: 10.1007/s11270-014-2257-6 Google Scholar
  8. 8.
    Uyar G, Kaygusuz H, Erim FB (2016) Methylene blue removal by alginate–clay quasi-cryogel beads. React Funct Polym 106:1–7. doi: 10.1016/j.reactfunctpolym.2016.07.001 CrossRefGoogle Scholar
  9. 9.
    Obeid L, El Kolli N, Dali N et al (2014) Adsorption of a cationic surfactant by a magsorbent based on magnetic alginate beads. J Colloid Interface Sci 432:182–189. doi: 10.1016/j.jcis.2014.06.027 CrossRefGoogle Scholar
  10. 10.
    Uzaşçı S, Tezcan F, Erim FB (2013) Removal of hexavalent chromium from aqueous solution by barium ion cross-linked alginate beads. Int J Environ Sci Technol 11:1861–1868. doi: 10.1007/s13762-013-0377-y Google Scholar
  11. 11.
    Kalaycıoğlu Z, Torlak E, Akın-Evingür G et al (2017) Antimicrobial and physical properties of chitosan films incorporated with turmeric extract. Int J Biol Macromol 101:882–888. doi: 10.1016/j.ijbiomac.2017.03.174 CrossRefGoogle Scholar
  12. 12.
    Kaygusuz H, Torlak E, Akın-Evingür G et al (2017) Antimicrobial cerium ion-chitosan crosslinked alginate biopolymer films: a novel and potential wound dressing. Int J Biol Macromol. doi: 10.1016/j.ijbiomac.2017.07.144 Google Scholar
  13. 13.
    Berger J, Reist M, Mayer JM et al (2004) Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 57:19–34. doi: 10.1016/S0939-6411(03)00161-9 CrossRefGoogle Scholar
  14. 14.
    Parhizgar F, Alishahi A, Varasteh H, Rezaee H (2016) Removing sodium dodecyl benzene sulfonate (SDBS) from aqueous solutions using chitosan. J Polym Environ. doi: 10.1007/s10924-016-0855-7 Google Scholar
  15. 15.
    Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403. doi: 10.1021/ja02242a004 CrossRefGoogle Scholar
  16. 16.
    Freundlich HMF (1906) Über die adsorption in Lösungen. Zeitschrift für Phys Chemie 57A:385–470Google Scholar
  17. 17.
    Temkin MJ, Pyzhev V (1940) Recent modifications to Langmuir isotherms. Acta Physicochim USSR 12:217–222Google Scholar
  18. 18.
    Tseng R-L, Wu F-C (2008) Inferring the favorable adsorption level and the concurrent multi-stage process with the Freundlich constant. J Hazard Mater 155:277–287. doi: 10.1016/j.jhazmat.2007.11.061 CrossRefGoogle Scholar
  19. 19.
    Valizadeh S, Younesi H, Bahramifar N (2016) Highly mesoporous K2CO3 and KOH/activated carbon for SDBS removal from water samples: batch and fixed-bed column adsorption process. Environ Nanotechnology Monit Manag 6:1–13. doi: 10.1016/j.enmm.2016.06.005 CrossRefGoogle Scholar
  20. 20.
    Mi-Na Z, Xue-Pin L, Bi S (2006) Adsorption of surfactants on chromium leather waste. J Soc Leather Technol Chem 90:1–6. doi: 10.1346/CCMN.1970.0180205 Google Scholar
  21. 21.
    Öztekin N (2017) Removal of sodium dodecylbenzenesulfonate from aqueous solution using polyethyleneimine-modified bentonite clay. Desalin Water Treat 80:268–275. doi: 10.5004/dwt.2017.20904 CrossRefGoogle Scholar
  22. 22.
    Tally M, Atassi Y (2016) Synthesis and characterization of pH-sensitive superabsorbent hydrogels based on sodium alginate-g-poly(acrylic acid-co-acrylamide) obtained via an anionic surfactant micelle templating under microwave irradiation. Polym Bull 73:3183–3208. doi: 10.1007/s00289-016-1649-8 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of ChemistryIstanbul Technical UniversityIstanbulTurkey

Personalised recommendations