Skip to main content
Log in

Cornstarch-Gelatin Films: Commercial Gelatin Versus Chromed Leather Waste Gelatin and Evaluation of Drying Conditions

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this work, gelatin extracted from chromed leather waste (CLW) was used with cornstarch and glycerol to produce polymeric films. These films were compared with commercial gelatin ones. Gelatin from CLW presented a more pronounced plasticizer behavior than commercial gelatin. It may have occurred due to its lower molar mass, due to the presence of free amino acids from the partial degradation of the protein polypeptide chain during CLW gelatin extraction, and/or due to the presence of high salts content. The high drying temperature (40 °C) made the drying process faster than the starch retrogradation process. It resulted in the reduction of films crystallinity and tensile strength, and in the increase of elongation at break. It also increased equilibrium moisture content, as indicated by water sorption isotherms. FTIR spectra indicated that the absorption bands of cornstarch and CLW gelatin films are the same ones found for films of these materials when not combined, which indicates the presence of a system with phase separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ribeiro I, Peças P, Henriques E (2013) Mater Des 51:300

    Article  CAS  Google Scholar 

  2. Álvarez-Chávez CR, Edwards S, Moure-Eraso R, Geiser K (2012) J Clean Prod 23:47

    Article  Google Scholar 

  3. Forum WE (2016) The New plastics economy—Rethinking the future of plastics. World Economic Forum, p 36

  4. Gómez-Guillén MC, Pérez-Mateos M, Gómez-Estaca J, López-Caballero E, Giménez B, Montero P (2009) Trends Food Sci Technol 20:3

    Article  Google Scholar 

  5. Arvanitoyannis I, Psomiadou E, Nakayama A, Aiba S, Yamamoto N (1997) Food Chem 60:593

    Article  CAS  Google Scholar 

  6. Fakhoury FM, Silvia MM, Larissa CB, Yamashita F, Mei LHI, Queiroz FPC (2012) Food Sci Technol 49:149

    CAS  Google Scholar 

  7. Al-Hassan AA, Norziah MH (2012) Food Hydrocoll 26:108

    Article  CAS  Google Scholar 

  8. Ban W, Song J, Argyropoulos DS, Lucia LA (2006) J Appl Polym Sci 100:2542

    Article  CAS  Google Scholar 

  9. Jagannath JH, Nanjappa C, Gupta DKD, Bawa AS (2003) J Appl Polym Sci 88:64

    Article  CAS  Google Scholar 

  10. Martucci JF, Ruseckaite RA (2009) J Appl Polym Sci 112:2166

    Article  CAS  Google Scholar 

  11. Vieira MGA, da Silva MA, dos Santos LO, Beppu MM (2011) Eur Polym J 47:254

    Article  CAS  Google Scholar 

  12. Gennadios A (2002) Protein-based films and coatings. CRC Press, Boca Raton

    Book  Google Scholar 

  13. Wolf FA (2003) In: Aalbersberg WY et al (ed) Collagen and gelatin, Elsevier, Amsterdam, pp 219–269

    Google Scholar 

  14. Ocak B, Aslan A, Gürbüz G (2010) JALCA 106:232

    Google Scholar 

  15. Dettmer A, Santos RMO, Anjos PS, Gutterres M (2014) J AQEIC 65:93

    Google Scholar 

  16. Cabeza LF, Taylor MM, DiMaio GL, Brown E, Marmer W, Carrió R, Celma PJ, Cot J (1998) Waste Manage 18:211

    Article  CAS  Google Scholar 

  17. Mu C, Lin W, Zhang M, Zhu Q (2003) Waste Manage 23:835

    Article  CAS  Google Scholar 

  18. Jiang T, Zhang C, Qin F (2000) J Environ Sci 12:375

    CAS  Google Scholar 

  19. Veiga-Santos P, Oliveira LM, Cereda MP, Scamparini ARP (2007) Food Chem 103:255

    Article  CAS  Google Scholar 

  20. Acosta S, Chiralt A, Santamarina P, Rosello J, González-Martínez C, Cháfer M (2016) Food Hydrocoll 61:233–240

    Article  CAS  Google Scholar 

  21. Alves JS, dos Reis KC, Menezes EG, Pereira FV, Pereira J (2015) Carbohydr Polym 115:215

    Article  CAS  Google Scholar 

  22. Scopel BS, Lamers DL, Matos E, Baldasso C, Dettmer A (2016) JALCA 111:30

    CAS  Google Scholar 

  23. Martinéz C, Cuevas F (1989) Evaluación de la calidad culinaria y molinera del arroz: guía de estudio para ser usada como complemento de la unidad auditutorial sobre el mismo tema. CIAT, Cali

    Google Scholar 

  24. Laemmli UK (1970) Nature 227:680

    Article  CAS  Google Scholar 

  25. Weber FH, Collares-Queiroz FP, Chang YK (2009) Ciênc e Tecnol de Alim 29:748

    Article  Google Scholar 

  26. Shimazu AA, Mali S, Grossmann MVE (2007) Semina Ciênc Agr 28:79

    Article  CAS  Google Scholar 

  27. Mali S, Grossmann MVE, Yamashita F (2010) Semina Ciênc Agr 31:137

    Article  CAS  Google Scholar 

  28. Arvanitoyannis I, Nakayama A, Aiba S (1998) Carbohydr Polym 36:105

    Article  CAS  Google Scholar 

  29. Mali S, Sakanaka LS, Yamashita F, Grossmann MVE (2005) Carbohydr Polym 60:283

    Article  CAS  Google Scholar 

  30. Liu Z, Ge X, Lu Y, Dong S, Zhao Y, Zeng M (2012) Food Hydrocoll 26:311

    Article  Google Scholar 

  31. Selmin F, Franceschini I, Cupone IE, Minghetti P, Cilurzo F (2015) Carbohydr Polym 115:613

    Article  CAS  Google Scholar 

  32. Jiang X, Li H, Luo Y, Zhao Y, Hou L (2016) Int J Biol Macromol 82:223

    Article  CAS  Google Scholar 

  33. Zhang N, Liu X, Yu L, Shanks R, Petinaks E, Liu H (2013) Carbohydr Polym 95:649

    Article  CAS  Google Scholar 

  34. Zarski A, Ptak S, Siemion P, Kapusniak J (2016) Carbohydr Polym 137:657

    Article  CAS  Google Scholar 

  35. Kanmani P, Rhim JW (2014) Food Chem 148:162

    Article  CAS  Google Scholar 

  36. Nagarajan M, Benjakul S, Prodpran T, Songtipya P, Kishimura H (2012) Food Hydrocoll 29:389

    Article  CAS  Google Scholar 

  37. Prestes RC, Golunski SM, Toniazzo G, Kempka AP, Luccio MD (2013) Revista Brasileira de Produtos Agroindustriais 15:375

    Article  Google Scholar 

  38. Bet MR, Goissis G, Lacerda CA (2001) Biomacromolecules 2:1074

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was realized thanks to the financial support of the Brazilian National Council for Technological and Scientific Development (CNPq), the Rio Grande do Sul State’s Research Support Foundation (FAPERGS) and the University of Caxias do Sul (UCS). Sponsors had no involvement in this study other than providing necessary resources for its execution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bianca Santinon Scopel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scopel, B.S., Ribeiro, M.E., Dettmer, A. et al. Cornstarch-Gelatin Films: Commercial Gelatin Versus Chromed Leather Waste Gelatin and Evaluation of Drying Conditions. J Polym Environ 26, 1998–2006 (2018). https://doi.org/10.1007/s10924-017-1097-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1097-z

Keywords

Navigation