Skip to main content
Log in

Thermocatalytic Degradation of High Density Polyethylene into Liquid Product

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Thermocatalytic degradation of high density polyethylene (HDPE) was carried out using acid activated fire clay catalyst in a semi batch reactor. Thermal pyrolysis was performed in the temperature range of 420–500 °C. The liquid and gaseous yields were increased with increase in temperature. The liquid yield was obtained 30.1 wt% with thermal pyrolysis at temperature of 450 °C, which increased to 41.4 wt% with catalytic pyrolysis using acid activated fire clay catalyst at 10 wt% of catalyst loading. The composition of liquid products obtained by thermal and catalytic pyrolysis was analyzed by gas chromatography-mass spectrometry and compounds identified for catalytic pyrolysis were mainly paraffins and olefins with carbon number range of C6–C18. The boiling point was found in the range of commercial fuels (gasoline, diesel) and the calorific value was calculated to be 42 MJ/kg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R, Law KL (2015) Science 347:768–771

    Article  CAS  Google Scholar 

  2. Çelikgöğüs Ç, Karaduman A (2015) Energy Source Part A 37:2507–2513

    Article  Google Scholar 

  3. Marcilla A, Beltrán MI, Navarro R (2005) J Anal Appl Pyrolysis 74:361–369

    Article  CAS  Google Scholar 

  4. Sarker M, Rashid MM, Molla M (2011) J Fundam Renew Energy Appl. doi:10.4303/jfrea/R110201

    Google Scholar 

  5. Ahmad I, Khan MI, Ishaq M, Khan H, Gul K, Ahmad W (2013) Polym Degrad Stab 98:2512–2519

    Article  CAS  Google Scholar 

  6. Gulab H, Jan MR, Shah J (2015) J Chem Soc Pak 37:1267–1279

    Google Scholar 

  7. Jan MR, Shah J, Gulab H (2010) Fuel Process Technol 91:1428–1437

    Article  CAS  Google Scholar 

  8. Miskolczi N, Bartha L, Deák G, Jover B, Kallo D (2004) J Anal Appl Pyrolysis 72:235–242

    Article  CAS  Google Scholar 

  9. Shah J, Jan MR (2014) J Anal Appl Pyrolysis 109:196–204

    Article  Google Scholar 

  10. Ali S, Garforth AA, Harris DH, Rawlence DJ, Uemichi Y (2002) Catal Today 75:247–255

    Article  CAS  Google Scholar 

  11. Cardona SC, Corma A (2000) Appl Catalysis B 25:151–162

    Article  CAS  Google Scholar 

  12. Cakici AI, Yanik J, UÇar S, Karayildirim T, Anil H (2004) J Mater Cycles Waste Manage 6:20–26

    Article  CAS  Google Scholar 

  13. Manos G, Yusof IY, Papayannakos N, Gangas NH (2001) Indus Eng Chem Res 40:2220–2225

    Article  CAS  Google Scholar 

  14. Na JG, Jeong BH, Chung SH, Kim SS (2006) J Mater Cycles Waste Manage 8:126–132

    Article  CAS  Google Scholar 

  15. Ribeiro AM, Machado Júnior HF, Costa DA (2013) Braz J Chem Eng 30:825–934

    Article  CAS  Google Scholar 

  16. Kumar S, Panda AK, Singh RK (2013) Bull Chem React Eng Catal 8:61–69

    Article  CAS  Google Scholar 

  17. Varma AK, Mondal P (2016) J Therm Anal Calorim 124:487–497

    Article  CAS  Google Scholar 

  18. Kumar S, Prakash R, Murugan S, Singh RK (2013) Energy Convers Manage 74:323–331

    Article  CAS  Google Scholar 

  19. Ali S, Garforth AA, Harris DH, Rawlence DJ, Uemichi Y (2002) Catal Today 75(1):247–255

    Article  CAS  Google Scholar 

  20. Miskolczi N, Bartha L, Deák G (2006) Polym Degrad Stab 91:517–526

    Article  CAS  Google Scholar 

  21. Ohkita H, Nishiyama R, Tochihara Y, Mizushima T, Kakuta N, Morioka Y, Ueno A, Namiki Y, Tanifuji S (1993) Ind Eng Chem Res 32:3112–3116

    Article  CAS  Google Scholar 

  22. Marcilla A, Beltrán MI, Hernández F, Navarro R (2004) Appl Catal A 278:37–43

    Article  CAS  Google Scholar 

  23. Elordi G, Olazar M, Lopez G, Amutio M, Artetxe M, Aguado R, Bilbao J (2009) J Anal Appl Pyrolysis 85:345–351

    Article  CAS  Google Scholar 

  24. López A, De Marco I, Caballero BM, Laresgoiti MF, Adrados A, Aranzabal A (2011) Appl Catal B 104:211–219

    Article  Google Scholar 

  25. Jan MR, Shah J, Gulab H (2010) Fuel 89:474–480

    Article  Google Scholar 

  26. Miskolczi N, Wu C, Williams PT (2016) In: MATEC Web of conferences, vol 49. EDP Sciences, pp 1–6

  27. Liu M, Zhuo JK, Xiong SJ, Yao Q (2014) Energy Fuels 28:6038–6045

    Article  CAS  Google Scholar 

  28. Panda AK, Singh RK (2014) Int J Environ Waste Manage 13:104–114

    Article  CAS  Google Scholar 

  29. Filip MR, Pop A, Perhaiţa I, Truşcă R, Rusu T (2013) Adv Eng Forum 8:103–114

    Article  Google Scholar 

  30. De Stefanis A, Cafarelli P, Gallese F, Borsella E, Nana A, Perez G (2013) J Anal Appl Pyrolysis 104:479–484

    Article  Google Scholar 

  31. Lee KH, Shin DH (2003) Korean J Chem Eng 20:89–92

    Article  CAS  Google Scholar 

  32. Jan MR, Shah J, Gulab H (2013) Fuel 105:595–602

    Article  Google Scholar 

  33. Shah J, Jan MR (2014) J Ind Eng Chem 20:3604–3611

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasenjit Mondal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, L., Varma, A.K., Singh, G. et al. Thermocatalytic Degradation of High Density Polyethylene into Liquid Product. J Polym Environ 26, 1920–1929 (2018). https://doi.org/10.1007/s10924-017-1088-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1088-0

Keywords

Navigation