Advertisement

Journal of Polymers and the Environment

, Volume 26, Issue 5, pp 1920–1929 | Cite as

Thermocatalytic Degradation of High Density Polyethylene into Liquid Product

  • Lekhank Patil
  • Anil Kumar Varma
  • Gajendra Singh
  • Prasenjit Mondal
Original Paper
  • 150 Downloads

Abstract

Thermocatalytic degradation of high density polyethylene (HDPE) was carried out using acid activated fire clay catalyst in a semi batch reactor. Thermal pyrolysis was performed in the temperature range of 420–500 °C. The liquid and gaseous yields were increased with increase in temperature. The liquid yield was obtained 30.1 wt% with thermal pyrolysis at temperature of 450 °C, which increased to 41.4 wt% with catalytic pyrolysis using acid activated fire clay catalyst at 10 wt% of catalyst loading. The composition of liquid products obtained by thermal and catalytic pyrolysis was analyzed by gas chromatography-mass spectrometry and compounds identified for catalytic pyrolysis were mainly paraffins and olefins with carbon number range of C6–C18. The boiling point was found in the range of commercial fuels (gasoline, diesel) and the calorific value was calculated to be 42 MJ/kg.

Keywords

High density polyethylene Fire clay Catalyst Pyrolysis 

References

  1. 1.
    Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R, Law KL (2015) Science 347:768–771CrossRefGoogle Scholar
  2. 2.
    Çelikgöğüs Ç, Karaduman A (2015) Energy Source Part A 37:2507–2513CrossRefGoogle Scholar
  3. 3.
    Marcilla A, Beltrán MI, Navarro R (2005) J Anal Appl Pyrolysis 74:361–369CrossRefGoogle Scholar
  4. 4.
    Sarker M, Rashid MM, Molla M (2011) J Fundam Renew Energy Appl. doi: 10.4303/jfrea/R110201 Google Scholar
  5. 5.
    Ahmad I, Khan MI, Ishaq M, Khan H, Gul K, Ahmad W (2013) Polym Degrad Stab 98:2512–2519CrossRefGoogle Scholar
  6. 6.
    Gulab H, Jan MR, Shah J (2015) J Chem Soc Pak 37:1267–1279Google Scholar
  7. 7.
    Jan MR, Shah J, Gulab H (2010) Fuel Process Technol 91:1428–1437CrossRefGoogle Scholar
  8. 8.
    Miskolczi N, Bartha L, Deák G, Jover B, Kallo D (2004) J Anal Appl Pyrolysis 72:235–242CrossRefGoogle Scholar
  9. 9.
    Shah J, Jan MR (2014) J Anal Appl Pyrolysis 109:196–204CrossRefGoogle Scholar
  10. 10.
    Ali S, Garforth AA, Harris DH, Rawlence DJ, Uemichi Y (2002) Catal Today 75:247–255CrossRefGoogle Scholar
  11. 11.
    Cardona SC, Corma A (2000) Appl Catalysis B 25:151–162CrossRefGoogle Scholar
  12. 12.
    Cakici AI, Yanik J, UÇar S, Karayildirim T, Anil H (2004) J Mater Cycles Waste Manage 6:20–26CrossRefGoogle Scholar
  13. 13.
    Manos G, Yusof IY, Papayannakos N, Gangas NH (2001) Indus Eng Chem Res 40:2220–2225CrossRefGoogle Scholar
  14. 14.
    Na JG, Jeong BH, Chung SH, Kim SS (2006) J Mater Cycles Waste Manage 8:126–132CrossRefGoogle Scholar
  15. 15.
    Ribeiro AM, Machado Júnior HF, Costa DA (2013) Braz J Chem Eng 30:825–934CrossRefGoogle Scholar
  16. 16.
    Kumar S, Panda AK, Singh RK (2013) Bull Chem React Eng Catal 8:61–69CrossRefGoogle Scholar
  17. 17.
    Varma AK, Mondal P (2016) J Therm Anal Calorim 124:487–497CrossRefGoogle Scholar
  18. 18.
    Kumar S, Prakash R, Murugan S, Singh RK (2013) Energy Convers Manage 74:323–331CrossRefGoogle Scholar
  19. 19.
    Ali S, Garforth AA, Harris DH, Rawlence DJ, Uemichi Y (2002) Catal Today 75(1):247–255CrossRefGoogle Scholar
  20. 20.
    Miskolczi N, Bartha L, Deák G (2006) Polym Degrad Stab 91:517–526CrossRefGoogle Scholar
  21. 21.
    Ohkita H, Nishiyama R, Tochihara Y, Mizushima T, Kakuta N, Morioka Y, Ueno A, Namiki Y, Tanifuji S (1993) Ind Eng Chem Res 32:3112–3116CrossRefGoogle Scholar
  22. 22.
    Marcilla A, Beltrán MI, Hernández F, Navarro R (2004) Appl Catal A 278:37–43CrossRefGoogle Scholar
  23. 23.
    Elordi G, Olazar M, Lopez G, Amutio M, Artetxe M, Aguado R, Bilbao J (2009) J Anal Appl Pyrolysis 85:345–351CrossRefGoogle Scholar
  24. 24.
    López A, De Marco I, Caballero BM, Laresgoiti MF, Adrados A, Aranzabal A (2011) Appl Catal B 104:211–219CrossRefGoogle Scholar
  25. 25.
    Jan MR, Shah J, Gulab H (2010) Fuel 89:474–480CrossRefGoogle Scholar
  26. 26.
    Miskolczi N, Wu C, Williams PT (2016) In: MATEC Web of conferences, vol 49. EDP Sciences, pp 1–6Google Scholar
  27. 27.
    Liu M, Zhuo JK, Xiong SJ, Yao Q (2014) Energy Fuels 28:6038–6045CrossRefGoogle Scholar
  28. 28.
    Panda AK, Singh RK (2014) Int J Environ Waste Manage 13:104–114CrossRefGoogle Scholar
  29. 29.
    Filip MR, Pop A, Perhaiţa I, Truşcă R, Rusu T (2013) Adv Eng Forum 8:103–114CrossRefGoogle Scholar
  30. 30.
    De Stefanis A, Cafarelli P, Gallese F, Borsella E, Nana A, Perez G (2013) J Anal Appl Pyrolysis 104:479–484CrossRefGoogle Scholar
  31. 31.
    Lee KH, Shin DH (2003) Korean J Chem Eng 20:89–92CrossRefGoogle Scholar
  32. 32.
    Jan MR, Shah J, Gulab H (2013) Fuel 105:595–602CrossRefGoogle Scholar
  33. 33.
    Shah J, Jan MR (2014) J Ind Eng Chem 20:3604–3611CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Lekhank Patil
    • 1
  • Anil Kumar Varma
    • 1
  • Gajendra Singh
    • 1
  • Prasenjit Mondal
    • 1
  1. 1.Department of Chemical EngineeringIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations