Skip to main content
Log in

Thermal and Flame Retardancy Behavior of Oil Palm Based Epoxy Nanocomposites

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The aim of present study was to investigate the thermal properties and flame retardancy behavior of flame retardant (FR) epoxy nanocomposites from chemically treated (bromine water and tin chloride) oil palm empty fruit bunch (OPEFB) nano filler at different filler loading (1, 3, 5%). Thermal properties were evaluated through thermogravimetry analyzer, derivative thermogravimetry and differential scanning calorimetry. FR properties of nanocomposites are evaluated through UL-94 vertical burning test and limiting oxygen index (LOI). The functional group analysis of all composites was made by FTIR spectroscopy. Thermal analysis shows that degradation temperature of epoxy composites shifts from 370 to 410 °C and char yield also increases for 3% loading. Furthermore LOI value of 29% and UL-94 rating of V-0 with no flame dripping and cotton ignition, revealed that 3% oil palm nano filler filled epoxy nanocomposites display satisfactory flame retardancy. The superior flame retardancy of epoxy nanocomposites are attributed to the chemical reactions occurred in the gaseous phases and the profound synergistic flame retardation effect of tin with bromine in the treated nano OPEFB filler. All the epoxy nanocomposites displayed almost similar FTIR spectra with the characteristics metal-halogen bond supporting the synergism. Homogeneous dispersion of 3% oil palm nano filler act as highly effective combustion chain terminating agent compared with 1 and 5% nano OPEFB/epoxy nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Saba N, Jawaid M, Paridah M, Al-othman O (2016) Polym Adv Technol 27:577–590

    Article  CAS  Google Scholar 

  2. Alaee M, Arias P, Sjödin A, Bergman à (2003) Environ Int 29(6):683–689

    Article  CAS  Google Scholar 

  3. Horrocks A, Kandola B, Davies P, Zhang S, Padbury S (2005) Polym Degrad Stab 88(1):3–12

    Article  CAS  Google Scholar 

  4. Sroka J, Rybak A, Sekula R, Sitarz MJ (2016) Polym Environ 24(4):298–308

    Article  CAS  Google Scholar 

  5. Sen AK, Kumar S (2010) J Therm Anal Calorim 101(1):265–271

    Article  CAS  Google Scholar 

  6. Srivastava R, Srivastava D (2015) J Polym Environ 23(3):283–293

    Article  CAS  Google Scholar 

  7. Jeencham R, Suppakarn N, Jarukumjorn K (2014) Compos B 56:249–253

    Article  CAS  Google Scholar 

  8. Zotti A, Borriello A, Ricciardi M, Antonucci V, Giordano M, Zarrelli M (2015) Compos B 73:139–148

    Article  CAS  Google Scholar 

  9. Kandola B, Horrocks A, Myler P, Blair D (2003) Compos A 34(9):863–873

    Article  Google Scholar 

  10. Rakotomalala M, Wagner S, Döring M (2010) Materials 3(8):4300–4327

    Article  CAS  Google Scholar 

  11. Ahmetli G, Deveci H, Soydal U, Seker A, Kurbanli R (2012) Prog Org Coat 75(1):97–105

    Article  CAS  Google Scholar 

  12. Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta J-M, Dubois P (2009) Mater Sci Eng 63(3):100–125

    Article  Google Scholar 

  13. Saba N, Jawaid M, Alothman OY, Paridah M, Hassan A (2015) J Reinf Plast Compos. doi:10.1177/0731684415618459

    Google Scholar 

  14. Sponton M, Mercado L, Ronda J, Galia M, Cadiz V (2008) Polym Degrad Stab 93(11):2025–2031

    Article  CAS  Google Scholar 

  15. Zhang M, Buekens A, Li X (2016) J Hazard Mater 304:26–39

    Article  CAS  Google Scholar 

  16. Tue NM, Goto A, Takahashi S, Itai T, Asante KA, Kunisue T, Tanabe S (2016) J Hazard Mater 302:151–157

    Article  CAS  Google Scholar 

  17. Yang SY, Lin WN, Huang YL, Tien HW, Wang JY, Ma CCM, Li SM, Wang YS (2011) Carbon 49(3):793–803

    Article  CAS  Google Scholar 

  18. Oliwa R, Heneczkowski M, Oleksy M, Galina H (2016) Compos B 95:1–8

    Article  CAS  Google Scholar 

  19. Atkinson P, Haines P, Skinner G (2001) Polym Degrad Stab 71(3):351–360

    Article  CAS  Google Scholar 

  20. Grexa O, Poutch F, Manikova D, Martvonova H, Bartekova A (2003) Polym Degrad Stab 82(2):373–377

    Article  CAS  Google Scholar 

  21. Nohales A, Muñoz-Espí R, Félix P, Gómez CM (2011) J Appl Polym Sci 119(1):539–547

    Article  CAS  Google Scholar 

  22. Chen C, Morgan AB (2009) Polymer 50(26):6265–6273

    Article  CAS  Google Scholar 

  23. Lazko J, Landercy N, Laoutid F, Dangreau L, Huguet M, Talon O (2013) Polym Degrad Stab 98(5):1043–1051

    Article  CAS  Google Scholar 

  24. Reti C, Casetta M, Duquesne S, Delobel R, Soulestin J, Bourbigot S (2009) J Eng Fibers Fabr 4(2):33e39

    Google Scholar 

  25. Wang X, Song L, Pornwannchai W, Hu Y, Kandola B (2013) Compos A S53:88–96

    Article  Google Scholar 

  26. Lee CH, Salit MS, Hassan MR (2014) Adv Mater Sci. doi:10.1155/2014/514036

    Google Scholar 

  27. Saba N, Tahir PM, Jawaid M (2014) Polymers 6(8):2247–2273

    Article  Google Scholar 

  28. Saba N, Paridah TM, Abdan K, Ibrahim NA (2015) BioResources 10(3):4530–4543

    Article  CAS  Google Scholar 

  29. Ávila H, Rodríguez-Páez J (2009) J Non-Cryst Solids 355(14):885–890

    Article  Google Scholar 

  30. Chakraborty A, Sain M, Kortschot M (2005) Holzforschung 59(1):102–107

    Article  CAS  Google Scholar 

  31. Mngomezulu ME, John MJ, Jacobs V, Luyt AS (2014) Carbohyd Polym 111:149–182

    Article  CAS  Google Scholar 

  32. Dong Y, Umer R, Lau AKT (2015) Fillers and reinforcements for advanced nanocomposites. Woodhead Publishing, Cambridge

    Google Scholar 

  33. Khalil HA, Firoozian P, Bakare I, Akil HM, Noor AM (2010) Mater Des 31(7):3419–3425

    Article  Google Scholar 

  34. Sahoo SK, Mohanty S, Nayak SK (2015) Prog Org Coat 88:263–271

    Article  CAS  Google Scholar 

  35. Afzal A, Siddiqi HM, Iqbal N, Ahmad Z (2013) J Therm Anal Calorim 111(1):247–252

    Article  CAS  Google Scholar 

  36. Zhou Y, Wu P, Cheng Z, Ingram J, Jeelani S (2008) Express Polym Lett 2 (1):40–48

    Article  CAS  Google Scholar 

  37. Zabihi O, Omrani A, Rostami AA (2012) J Therm Anal Calorim 108(3):1251–1260

    Article  CAS  Google Scholar 

  38. Abdul Khalil HPS, Fizree HM, Bhat AH, Jawaid M, Abdullah CK (2013) Compos B 53:324–333

    Article  CAS  Google Scholar 

  39. Asiri AM, Hussein MA, Abu-Zied BM, Hermas A-EA (2013) Compos B 51:11–18

    Article  CAS  Google Scholar 

  40. Saba N, Tahir PM, Abdan K, Ibrahim NA (2016) BioResources 11 (3):7721–7736

    Article  CAS  Google Scholar 

  41. Lee S-E, Cho S, Lee Y-S (2014) Carbon Lett 15(1):32–37

    Article  Google Scholar 

  42. Sun T, Fan H, Wang Z, Liu X, Wu Z (2015) Mater Des 87:10–16

    Article  CAS  Google Scholar 

  43. Xu S, Girouard N, Schueneman G, Shofner ML, Meredith JC (2013) Polymer 54(24):6589–6598

    Article  CAS  Google Scholar 

  44. Horrocks A (2009) J Fire Sci 27:495

    Article  CAS  Google Scholar 

  45. Horrocks A, Smart G, Kandola B, Price D (2012) Polym Degrad Stab 97(4):645–652

    Article  CAS  Google Scholar 

  46. Qu H, Wu W, Zheng Y, Xie J, Xu J (2011) Fire Saf J 46 (7):462–467

    Article  CAS  Google Scholar 

  47. Taguet A, Cassagnau P, Lopez-Cuesta J-M (2014) Prog Polym Sci 39(8):1526–1563

    Article  CAS  Google Scholar 

  48. Marquis DM, Guillaume E, Chivas-Joly C (2005) In: Cuppolett J (ed) Nanocomposites and Polymers with analytical methods. Intech, Czech, pp 261–284

  49. Suresh S, Saravanan P, Jayamoorthy K, Kumar SA, Karthikeyan S (2016) Mater Sci Eng C 64:286–292

    Article  CAS  Google Scholar 

  50. González MG, Cabanelas JC, Baselga J (2012) In: Theophile T (ed) Infrared spectroscopy - materials science, engineering and technology. Intech, Czech, pp 261–284

  51. Cecen V, Seki Y, Sarikanat M, Tavman IH (2008) J Appl Polym Sci 108(4):2163–2170

    Article  CAS  Google Scholar 

  52. Chan MI, Lau KT, Wong T, Cardona F (2011) Appl Surf Sci 258(2):860–864

    Article  CAS  Google Scholar 

  53. Nie W, Liu J, LIu W, Wang J, Tang T (2015) Polym Degrad Stab 111:247–256

    Article  CAS  Google Scholar 

  54. Meng T, Gao X, Zhang J, Yuan J, Zhang Y, He J (2009) Polymer 50(2):447–454

    Article  CAS  Google Scholar 

  55. Rayung M, Ibrahim NA, Zainuddin N, Saad WZ, Razak NIA, Chieng BW (2014) Int J Mol Sci 15 (8):14728–14742

    Article  CAS  Google Scholar 

  56. Li P, Zheng Y, Li M, Shi T, Li D, Zhang A (2016) Mater Des 89:653–659

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Ministry of Higher Education for Providing HICoE Grant No: 6369108 to INTROP, UPM for doing this work. The authors also extend their appreciation to the International Scientific Partnership Program ISPP at King Saud University for funding this research through ISPP#0011.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. Saba or M. Jawaid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saba, N., Paridah, M.T., Jawaid, M. et al. Thermal and Flame Retardancy Behavior of Oil Palm Based Epoxy Nanocomposites. J Polym Environ 26, 1844–1853 (2018). https://doi.org/10.1007/s10924-017-1087-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1087-1

Keywords

Navigation