Journal of Polymers and the Environment

, Volume 26, Issue 5, pp 1818–1830 | Cite as

Biodegradable Compatibilized Poly(l-lactide)/Thermoplastic Polyurethane Blends: Design, Preparation and Property Testing

  • Kanyarat Suthapakti
  • Robert Molloy
  • Winita Punyodom
  • Kanarat Nalampang
  • Thanawadee Leejarkpai
  • Paul D. Topham
  • Brian J. Tighe
Original Paper
  • 165 Downloads

Abstract

Biodegradable blends of poly(l-lactide) (PLL) toughened with a polycaprolactone-based thermoplastic polyurethane (TPU) elastomer and compatibilized with a purpose-designed poly(l-lactide-co-caprolactone) (PLLCL) copolymer were prepared. Both 2-component (PLL/TPU) and 3-component (PLL/TPU/PLLCL) blends of various compositions were prepared by melt mixing, hot-pressed into thin films and their properties tested. The results showed that, although the TPU could toughen the PLL, the blends were immiscible leading to phase separation with the TPU domains distributed in the PLL matrix. However, addition of the PLLCL copolymer could partially compatibilize the blend by improving the interfacial adhesion between the two phases. Biodegradability testing showed that the blends were biodegradable and that the PLLCL copolymer could increase the rate of biodegradation under controlled composting conditions. The 3-component blend of composition PLL/TPU/PLLCL = 90/10/10 parts by weight was found to exhibit the best all-round properties.

Keywords

Poly(l-lactide) Thermoplastic polyurethane elastomer Poly(l-lactide-co-caprolactone) Immiscible blend Compatibilization Biodegradability 

Notes

Acknowledgements

The authors wish to thank the Graduate School, Chiang Mai University, for the provision of a research grant for one of us (K.S.) and the National Research University Project under Thailand’s Office of the Higher Education Commission for financial support.

References

  1. 1.
    ASTM D5338-15 (2015) Standard test method for determining aerobic biodegradation of plastic materials under controlled composting conditions, incorporating thermophilic temperatures, ASTM International, West ConshohockenGoogle Scholar
  2. 2.
    Auras RA, Lim L-T, Selke SEM, Tsuji H (eds) (2010) Poly(lactic acid): synthesis, structures, properties, processing, and applications. Wiley, HobokenCrossRefGoogle Scholar
  3. 3.
    Ren J (ed) (2010) Biodegradable poly(lactic acid): synthesis, modification, processing and applications. Tsinghua University Press, BeijingGoogle Scholar
  4. 4.
    Piemonte V (ed) (2014) Polylactic acid: synthesis, properties and applications. Nova Science, New YorkGoogle Scholar
  5. 5.
    Endres H-J, Siebert-Raths A (2011) Engineering biopolymers: markets, manufacturing, properties and applications. Hanser, MunichCrossRefGoogle Scholar
  6. 6.
    Garlotta D (2001) J Polym Environ 9:63–84CrossRefGoogle Scholar
  7. 7.
    Hamad K, Kaseem M, Yang HW, Deri F, Ko YG (2015) Express Polym Lett 9:435–455CrossRefGoogle Scholar
  8. 8.
    Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Compr Rev Food Sci Food Saf 9:552–571CrossRefGoogle Scholar
  9. 9.
    Urquijo J, Guerrica-Echevarria G, Eguiazabal JI (2015) J Appl Polym Sci 132:42641. doi: 10.1002/app.42641 CrossRefGoogle Scholar
  10. 10.
    Ostafinska A, Fortelny I, Nevoralova M, Hodan J, Kredatusova J, Slouf M (2015) RSC Adv 5:98971–98982CrossRefGoogle Scholar
  11. 11.
    López-Rodríguez N, López-Arraiza A, Meaurio E, Sarasua JR (2006) Polym Eng Sci 46:1299–1308CrossRefGoogle Scholar
  12. 12.
    Zhang M, Thomas NL (2011) Adv Polym Technol 30:67–79CrossRefGoogle Scholar
  13. 13.
    Yokohara T, Yamaguchi M (2008) Eur Polym J 44:677–685CrossRefGoogle Scholar
  14. 14.
    Shibata M, Inoue Y, Miyoshi M (2006) Polymer 47:3557–3564CrossRefGoogle Scholar
  15. 15.
    Jiang L, Wolcott MP, Zhang J (2006) Biomacromolecules 7:199–207CrossRefGoogle Scholar
  16. 16.
    Kunthadong P, Molloy R, Worajittiphon P, Leejarkpai T, Kaabbuathong N, Punyodom W (2015) J Polym Environ 23:107–113CrossRefGoogle Scholar
  17. 17.
    Singla RK, Maiti SN, Ghosha AK (2016) RSC Adv 6:14580–14588CrossRefGoogle Scholar
  18. 18.
    Feng F, Ye L (2011) J Appl Polym Sci 119:2778–2783CrossRefGoogle Scholar
  19. 19.
    Feng F, Zhao X, Ye L (2011) J Macromol Sci B 50:1500–1507CrossRefGoogle Scholar
  20. 20.
    Lai S-M, Lan Y-C (2013) J Polym Res 20:140. doi: 10.1007/s10965-013-0140-6 CrossRefGoogle Scholar
  21. 21.
    Lai S-M, Wu W-L, Wang Y-J (2016) J Polym Res 23:99. doi: 10.1007/s10965-016-0993-6 CrossRefGoogle Scholar
  22. 22.
    Jing X, Mi HY, Salick MR, Cordie T, Crone WC, Peng X-F, Turng L-S (2014) J Cell Plast 50:361–379CrossRefGoogle Scholar
  23. 23.
    Jaso V, Glenn G, Klamczynski A, Petrovic ZS (2015) Polym Test 47:1–3CrossRefGoogle Scholar
  24. 24.
    Li Y, Shimizu H (2007) Macromol Biosci 7:921–928CrossRefGoogle Scholar
  25. 25.
    Yuan Y, Ruckenstein E (1998) Polym Bull 40:485–490CrossRefGoogle Scholar
  26. 26.
    Hyon S-H, Jamshidi K, Ikada Y (1997) Biomaterials 18:1503–1508CrossRefGoogle Scholar
  27. 27.
    ASTM D1238-13 (2013) Standard test method for melt flow rates of thermoplastics by extrusion plastometer. ASTM International, West ConshohockenGoogle Scholar
  28. 28.
    ASTM D882-02 (2002) Standard test method for tensile properties of thin plastic sheeting. ASTM International, West ConshohockenGoogle Scholar
  29. 29.
    ASTM F1249-13 (2013) Standard test method for water vapor transmission rate through plastic film and sheeting using a modulated infrared sensor. ASTM International, West ConshohockenGoogle Scholar
  30. 30.
    ASTM D3985-05(2010)e1 (2010) Standard test method for oxygen gas transmission rate through plastic film and sheeting using a coulometric sensor. ASTM International, West ConshohockenGoogle Scholar
  31. 31.
    ISO 14855-1:2005 (2005) Determination of the ultimate aerobic biodegradability of plastic materials under controlled composting conditions—Method by analysis of evolved carbon dioxide—Part 1: General method. International Organization for Standardization, Geneva, SwitzerlandGoogle Scholar
  32. 32.
    Grijpma DW, Pennings AJ (1991) Polym Bull 25:335–341CrossRefGoogle Scholar
  33. 33.
    Nalampang K, Molloy R, Punyodom W (2007) Polym Adv Technol 18:240–247CrossRefGoogle Scholar
  34. 34.
    Kricheldorf HR, Kreiser I (1987) J Macromol Sci A 24:1345–1356CrossRefGoogle Scholar
  35. 35.
    Kasperczyk J, Bero M (1991) Makromol Chem 192:1777–1787CrossRefGoogle Scholar
  36. 36.
    Kasperczyk J, Bero M (1993) Makromol Chem 194:913–925CrossRefGoogle Scholar
  37. 37.
    Martínez-Abad A, González-Ausejo J, Lagarón JM, Cabedo L (2016) Polym Degrad Stab 132:52–61CrossRefGoogle Scholar
  38. 38.
    Spontak RJ, Patel NP (2004) In: Hamley IW (ed) Developments in Block Copolymer Science and Technology, Chap. 5, pp 159 ff, Wiley, ChichesterGoogle Scholar
  39. 39.
    Lunt J (1998) Polym Degrad Stab 59:145–152CrossRefGoogle Scholar
  40. 40.
    Rudeekit Y, Numnoi J, Tajan M, Chaiwutthinan P, Leejarkpai T (2008) J Metals Mater Miner 18:83–87Google Scholar
  41. 41.
    Tsuji H (2008) Degradation of poly(lactide)-based biodegradable materials. Nova Science, New YorkGoogle Scholar
  42. 42.
    Tokiwa Y, Calabia BP (2007) J Polym Environ 15:259–267CrossRefGoogle Scholar
  43. 43.
    JIS K 6953 (2000) (ISO 14855), Determination of the ultimate aerobic biodegradability and disintegration of plastic materials under controlled composting conditions (Method by analysis of evolved carbon dioxide), Biodegradable Plastics Society. JapanGoogle Scholar
  44. 44.
    Tsuji H, Ishizaka T (2001) Int J Biol Macromol 29:83–89CrossRefGoogle Scholar
  45. 45.
    Tsuji H, Ishizaka T (2001) Macromol Biosci 1:59–65CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Polymer Research Group, Department of Chemistry, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  2. 2.Materials Science Research Center, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  3. 3.National Metal and Materials Technology Center, National Science and Technology Development AgencyThailand Science ParkPathum ThaniThailand
  4. 4.Aston Institute of Materials ResearchAston UniversityBirminghamUK
  5. 5.Department of Chemical Engineering and Applied Chemistry, School of Engineering and Applied ScienceAston UniversityBirminghamUK

Personalised recommendations