Skip to main content
Log in

Synthesis of CS/PVA Biodegradable Composite Nanofibers as a Microporous Material with Well Controllable Procedure Through Electrospinning

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this study, we have showed a facile route for fabrication of a novel microporous material based on chitosan (CS) and poly(vinyl alcohol) (PVA) biodegradable nanofibers that have high specific surface area, considerable porosity, and small diameter. Scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry, fourier transform infrared spectroscopy, Brunauer–Emmett–Teller surface area analysis, and CHNS/O elemental analyser were applied to characterize the fabricated CS/PVA composite nanofibers. Moreover, the influences of spinning conditions including concentration, voltage, electrospinning distance, and flow rate, on size distribution and pore diameter of the final product were systematically studied using 2k−1 factorial design experiments, and the response surface optimization was used for determining the best synthesis parameter. The results obtained from 2K−1 factorial design experiments showed that electrospinning parameters influenced the size distribution and pore diameter of the CS/PVA microporous material. Based on the response surface methodology, the CS/PVA product could be obtained with a high microporous diameter of 1.8 nm and a small diameter distribution of 15.0 nm under optimized conditions. The obtained results showed that the fabricated samples could be utilized in different applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Wannatong L, Sirivat A, Supaphol P (2004) Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene. Polym Int 53:1851–1859

    Article  CAS  Google Scholar 

  2. Agarwal S, Greiner A, Wendorff JH (2013) Functional materials by electrospinning of polymers. Prog Polym Sci 38:963–991

    Article  CAS  Google Scholar 

  3. Teo W-E, Inai R, Ramakrishna S (2016) Technological advances in electrospinning of nanofibers. Sci Technol Adv Mater. doi: 10.1088/1468-6996/12/1/013002

    Google Scholar 

  4. Persano L, Camposeo A, Tekmen C, Pisignano D (2013) Industrial upscaling of electrospinning and applications of polymer nanofibers: a review. Macromol Mater Eng 298:504–520

    Article  CAS  Google Scholar 

  5. Chou HY, Chien HS, Chang HJ, Nurmalasari NP (2015) Electrospinning solution, polyvinyl alcohol nanofibers and ion-exchange membrane. US Patent 20,150,328,631

  6. Essalhi M, Khayet M (2013) Self-sustained webs of polyvinylidene fluoride electrospun nanofibers at different electrospinning times: 2. Theoretical analysis, polarization effects and thermal efficiency. J Membr Sci 433:180–191

    Article  CAS  Google Scholar 

  7. Morie A, Garg T, Goyal AK, Rath G (2016) Nanofibers as novel drug carrier–an overview. Artifi Cells Nanomed Biotechnol 44:135–143

    Article  CAS  Google Scholar 

  8. Song W, Yu X, Markel DC, Shi T, Ren W (2013) Coaxial PCL/PVA electrospun nanofibers: osseointegration enhancer and controlled drug release device. Biofabrication 5:035006

    Article  Google Scholar 

  9. Chauhan D, Dwivedi J, Sankararamakrishnan N (2014) Novel chitosan/PVA/zerovalent iron biopolymeric nanofibers with enhanced arsenic removal applications. Environ Sci Pollut Res 21:9430–9442

    Article  CAS  Google Scholar 

  10. Habiba U, Afifi AM, Salleh A, Ang BC (2016) Chitosan/(polyvinyl alcohol)/zeolite electrospun composite nanofibrous membrane for adsorption of Cr6+, Fe3+ and Ni2+. J Hazard Mater. doi:10.1016/j.jhazmat.2016.06.028

    Google Scholar 

  11. D.H.K. Reddy, Lee S-M (2013) Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Adv Colloid Interface Sci 201:68–93

    Article  Google Scholar 

  12. Vakili M, Rafatullah M, Salamatinia B, Abdullah AZ, Ibrahim MH, Tan KB, Gholami Z, Amouzgar P (2014) Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: a review. Carbohydr Polym 113:115–130

    Article  CAS  Google Scholar 

  13. Kyzas GZ, Siafaka PI, Pavlidou EG, Chrissafis KJ, Bikiaris DN (2015) Synthesis and adsorption application of succinyl-grafted chitosan for the simultaneous removal of zinc and cationic dye from binary hazardous mixtures. Chem Eng J 259:438–448

    Article  CAS  Google Scholar 

  14. Baker MI, Walsh SP, Schwartz Z, Boyan BD (2012) A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J Biomed Mater Res B Appl Biomater 100:1451–1457

    Article  Google Scholar 

  15. Karimi A, Navidbakhsh M, Yousefi H (2014) Mechanical properties of polyvinyl alcohol sponge under different strain rates. Int J Mater Res 105:404–408

    Article  CAS  Google Scholar 

  16. Xu Y, Jin S, Xu H, Nagai A, Jiang D (2013) Conjugated microporous polymers: design, synthesis and application. Chem Soc Rev 42:8012–8031

    Article  CAS  Google Scholar 

  17. Sun J-K, Xu Q (2014) Functional materials derived from open framework templates/precursors: synthesis and applications. Energy Environ Sci 7:2071–2100

    Article  CAS  Google Scholar 

  18. Zhang Y, Riduan SN (2012) Functional porous organic polymers for heterogeneous catalysis. Chem Soc Rev 41:2083–2094

    Article  CAS  Google Scholar 

  19. Choi KM, Na K, Somorjai GA, Yaghi OM (2015) Chemical environment control and enhanced catalytic performance of platinum nanoparticles embedded in nanocrystalline metal–organic frameworks. J Am Chem Soc 137:7810–7816

    Article  CAS  Google Scholar 

  20. Li W, Henke S, Cheetham AK (2014) Research update: mechanical properties of metal–organic frameworks–Influence of structure and chemical bonding. APL Mater 2:123902

    Article  Google Scholar 

  21. Katsenis AD, Puškarić A, Štrukil V, Mottillo C, Julien PA, Užarević K, Pham M-H, Do T-O, Kimber SA, Lazić P (2015) In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal-organic framework. Nature Commun 6:6662

    Article  CAS  Google Scholar 

  22. Sargazi G, Afzali D, Ghafainazari A, Saravani H (2014) Rapid Synthesis of cobalt metal organic framework. J Inorg Organomet Polym Mater 24:786–790

    Article  CAS  Google Scholar 

  23. Salah R, Michaud P, Mati F, Harrat Z, Lounici H, Abdi N, Drouiche N, Mameri N (2013) Anticancer activity of chemically prepared shrimp low molecular weight chitin evaluation with the human monocyte leukaemia cell line, THP-1. Int J Biol Macromol 52:333–339

    Article  CAS  Google Scholar 

  24. Younes I, Sellimi S, Rinaudo M, Jellouli K, Nasri M (2014) Influence of acetylation degree and molecular weight of homogeneous chitosans on antibacterial and antifungal activities. Int J Food Microbiol 185:57–63

    Article  CAS  Google Scholar 

  25. Tomé LC, Fernandes SC, Perez DS, Sadocco P, Silvestre AJ, Neto CP, Marrucho IM, Freire CS (2013) The role of nanocellulose fibers, starch and chitosan on multipolysaccharide based films. Cellulose 20:1807–1818

    Article  Google Scholar 

  26. Dehnad D, Mirzaei H, Emam-Djomeh Z, Jafari S-M, Dadashi S (2014) Thermal and antimicrobial properties of chitosan–nanocellulose films for extending shelf life of ground meat. Carbohydr Polym 109:148–154

    Article  CAS  Google Scholar 

  27. Khalil A, Hashaikeh R (2014) Electrospinning of nickel oxide nanofibers: Process parameters and morphology control. Mater Charact 95:65–71

    Article  CAS  Google Scholar 

  28. Sargazi G, Afzali D, Mostafavi A, Ebrahimipour SY (2017) Ultrasound-assisted facile synthesis of a new tantalum (V) metal-organic framework nanostructure: design, characterization, systematic study, and CO2 adsorption performance. J Solid State Chem 250:32–48

    Article  CAS  Google Scholar 

  29. Hutchison CA, Chuang R-Y, Noskov VN, Assad-Garcia N, Deerinck TJ, Ellisman MH, Gill J, Kannan K, Karas BJ, Ma L (2016) Design and synthesis of a minimal bacterial genome. Science 351:aad6253

    Article  Google Scholar 

  30. Zaidi S, Oulebsir A, Omine K, Alonzo V, Chaabane T, Darchen A, Msagati T, Sivasankar V (2017) Preparation of mesoporous alumina electro-generated by electrocoagulation in NaCl electrolyte and application in fluoride removal with consistent regenerations. Arab J Chem. doi: 10.1016/j.arabjc.2017.04.007

    Google Scholar 

  31. Lambropoulou D, Evgenidou E, Saliverou V, Kosma C, Konstantinou I (2017) Degradation of venlafaxine using TiO2/UV process: kinetic studies, RSM optimization, identification of transformation products and toxicity evaluation. J Hazard Mater 323:513–526

    Article  CAS  Google Scholar 

  32. Wang J, Chen C (2014) Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides. Bioresour Technol 160:129–141

    Article  CAS  Google Scholar 

  33. Kyzas GZ, Deliyanni EA (2013) Mercury (II) removal with modified magnetic chitosan adsorbents. Molecules 18:6193–6214

    Article  CAS  Google Scholar 

  34. Esmaeili A, Beni AA (2014) A novel fixed-bed reactor design incorporating an electrospun PVA/chitosan nanofiber membrane. J Hazard Mater 280:788–796

    Article  CAS  Google Scholar 

  35. Susanto H, Samsudin AM, Faz MW, Rani MP (2016) Impact of post-treatment on the characteristics of electrospun poly(vinyl alcohol)/chitosan nanofibers, in: The 3rd international conference on advanced materials science and technology (ICAMST 2015), AIP Publishing, &, pp<background-color:#96C864;> </background-color:#96C864;>020087t;/bib>

  36. Mahmoodi NM, Mokhtari-Shourijeh Z (2015) Preparation of PVA-chitosan blend nanofiber and its dye removal ability from colored wastewater. Fibers Polym 16:1861–1869

    Article  CAS  Google Scholar 

  37. Qian Y, Qi M, Zheng L, King MW, Lv L, Ye F (2016) Incorporation of rutin in electrospun pullulan/pva nanofibers for novel uv-resistant properties. Materials 9:504

    Article  Google Scholar 

  38. Sargazi G, Afzali D, Daldosso N, Kazemian H, Chauhan N, Sadeghian Z, Tajerian T, Ghafarinazari A, Mozafari M (2015) A systematic study on the use of ultrasound energy for the synthesis of nickel–metal organic framework compounds. Ultrason Sonochem 27:395–402

    Article  CAS  Google Scholar 

  39. Song W, Zhao L, Fang K, Chang B, Zhang Y (2015) Biofunctionalization of titanium implant with chitosan/siRNA complex through loading-controllable and time-saving cathodic electrodeposition. J Mater Chem B 3:8567–8576

    Article  CAS  Google Scholar 

  40. Boonsongrit Y, Mueller BW, Mitrevej A (2008) Characterization of drug–chitosan interaction by 1 H NMR, FTIR and isothermal titration calorimetry. Eur J Pharm Biopharm 69:388–395

    Article  CAS  Google Scholar 

  41. Mincheva R, Manolova N, Sabov R, Kjurkchiev G, Rashkov I (2004) Hydrogels from chitosan crosslinked with poly(ethylene glycol) diacid as bone regeneration materials. e-Polymers 4:643–653

    Article  Google Scholar 

  42. Rouquerol J, Rouquerol F, Llewellyn P, Maurin G, Sing KS (2013) Adsorption by powders and porous solids: principles, methodology and applications. Academic Press, San Diego

    Google Scholar 

  43. Adams CW, Bielmann M, Zhang Z (2016) Microporous membranes, separators, lithium batteries, and related methods, in, Google Patents

  44. Hadipour-Goudarzi E, Montazer M, Latifi M, A.A.G. Aghaji (2014) Electrospinning of chitosan/sericin/PVA nanofibers incorporated with in situ synthesis of nano silver. Carbohydr Polym 113:231–239

    Article  CAS  Google Scholar 

  45. Habiba U, Afifi AM, Salleh A, Ang BC (2017) Chitosan/(polyvinyl alcohol)/zeolite electrospun composite nanofibrous membrane for adsorption of Cr6+, Fe3+ and Ni2+. J Hazard Mater 322:182–194

    Article  CAS  Google Scholar 

  46. Liu Z, Zhang F, Ming J, Bie S, Li J, Zuo B (2015) Preparation of electrospun silk fibroin nanofibers from solutions containing native silk fibrils. J Appl Polym Sci. doi: 10.1002/app.41236

  47. Pelipenko J, Kocbek P, Kristl J (2015) Nanofiber diameter as a critical parameter affecting skin cell response. Eur J Pharm Sci 66:29–35

    Article  CAS  Google Scholar 

  48. Liu R, Xu X, Zhuang X, Cheng B (2014) Solution blowing of chitosan/PVA hydrogel nanofiber mats. Carbohydr Polym 101:1116–1121

    Article  CAS  Google Scholar 

  49. Zhou Y, Yang H, Liu X, Mao J, Gu S, Xu W (2013) Electrospinning of carboxyethyl chitosan/poly(vinyl alcohol)/silk fibroin nanoparticles for wound dressings. Int J Biol Macromol 53:88–92

    Article  CAS  Google Scholar 

  50. Yazdanpanah M, Khanmohammadi M, Aghdam R, Shabani K, Rajabi M (2014) Optimization of electrospinning process of poly(vinyl alcohol) via response surface methodology (RSM) based on the central composite design. Curr Chem Lett 3:175–182

    Article  CAS  Google Scholar 

  51. Kheradmandi M, Vasheghani-Farahani E, Ghiaseddin A, Ganji F (2016) Skeletal muscle regeneration via engineered tissue culture over electrospun nanofibrous chitosan/PVA scaffold. J Biomed Mater Res Part A 104:1720–1727

    Article  CAS  Google Scholar 

  52. Lv T, Yao Y, Li N, Chen T (2016) Wearable fiber-shaped energy conversion and storage devices based on aligned carbon nanotubes. Nano Today 11:644-660

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghasem Sargazi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sargazi, G., Afzali, D., Mostafavi, A. et al. Synthesis of CS/PVA Biodegradable Composite Nanofibers as a Microporous Material with Well Controllable Procedure Through Electrospinning. J Polym Environ 26, 1804–1817 (2018). https://doi.org/10.1007/s10924-017-1080-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1080-8

Keywords

Navigation