Skip to main content
Log in

Effect of Shrimp Shell Waste on the Properties of Wheat Gluten Based-Bioplastics

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Wheat gluten based bioplastics with shrimp shell waste filler were prepared using compression molding. The effects of various amounts (0, 2.5, 5.0, 7.5 and 10 wt%) of shrimp shell powder and calcined shrimp shell powder on the tensile, morphological, thermal properties, and degradation of wheat gluten composites were investigated. The addition of shrimp shell powder improved the tensile properties of the wheat gluten composites. The tensile strength of the wheat gluten composite with 2.5 wt% of shrimp shell powder increased twofold compared to the wheat gluten based-bioplastic without shrimp shell loading. A comparison of the performance of the wheat gluten composites made with different shrimp shell types revealed that composites with calcined shrimp shell powder had better tensile, morphological and thermal properties due to the altered layer structure and higher mineral content resulting from calcination. Moreover, calcined shrimp shell powder had a significant influence on the degradation process of the wheat gluten composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dong Z, Hou X, Haigler I, Yang Y (2016) Preparation and properties of cotton stalk bark fibers and their cotton blended yarns and fabrics. J Clean Prod 139:267–276

    Article  CAS  Google Scholar 

  2. Gok MK, Ozgumus S, Demir K, Cirit U, Pabuccuolu S, Cevher E, Ozsoy Y, Bacınolu S (2016) Development of starch based mucoadhesive vaginal drug delivery systems for application in veterinary medicine. Carbohydr Polym 136:63–70

    Article  CAS  Google Scholar 

  3. Hong NV, Pyka G, Wevers M, Goderis B, Puyvelde PV, Verpoest I, Van Vuure AW (2015) Processing rigid wheat gluten biocomposites for high mechanical performance. Compos A 79:74–81

    Article  Google Scholar 

  4. Bootklad M, Chantarak S, Kaewtatip K (2016) Novel biocomposites based on wheat gluten and rubber wood sawdust. J Appl Polym Sci. doi:10.1002/app.43705

    Google Scholar 

  5. Robertson GH, Cao TK, Gregorski KS, Hurkman WJ, Tanaka CK, Chiou B-S, Glenn GM, Orts WJ (2014) Modification of vital wheat gluten with phosphoric acid to produce high free swelling capacity. J Appl Polym. doi:10.1002/app.39440

    Google Scholar 

  6. Bibi F, Guillaume C, Vena A, Gontard N, Sorli B (2016) Wheat gluten, a bio-polymer layer to monitor relative humidity in food packaging: electric and dielectric characterization. Sens Actuat A Phys 247:355–367

    Article  CAS  Google Scholar 

  7. Tuck CS, Latham A, Lee PW, Barone JR (2014) Wheat gluten plasticized with its own hydrolysate. J Polym Environ 22:430–438

    Article  CAS  Google Scholar 

  8. Angellier-Coussy H, Gastaldi E, Gontard N, Guillard V (2011) Influence of processing temperature on the water vapour transport properties of wheat gluten based agromaterials. Ind Crops Prod 33:57–461

    Article  Google Scholar 

  9. Ye P, Reitz L, Horan C, Parnas R (2006) Manufacture and biodegradation of wheat gluten/basalt composite material. J Polym Environ 14(1):1–7

    Article  CAS  Google Scholar 

  10. Langstraat TD, Jansens KJA, Delcour JA, Verpoest I, Puyvelde PV, Goderis B (2015) Effect of aqueous and alcoholic shear treatments on the properties of rigid plastics from wheat gluten. Ind Crops Prod 77:146–155

    Article  CAS  Google Scholar 

  11. Zárate-Ramírez LS, Romero A, Martínez I, Bengoechea C, Partal P, Guerrero A (2014) Effect of aldehydes on thermomechanical properties of gluten-based bioplastics. Food Bioprod Process 92:20–29

    Article  Google Scholar 

  12. Zhang X, Do MD, Kurniawan L, Qiao GG (2010) Wheat gluten-based renewable and biodegradable polymer materials with enhanced hydrophobicity by using epoxidized soybean oil as a modifier. Carbohydr Res 345:2174–2182

    Article  CAS  Google Scholar 

  13. Hemsri S, Asandei AD, Grieco K, Parnas RS (2011) Biopolymer composites of wheat gluten with silica and alumina. Compos A 42:1764–1773

    Article  Google Scholar 

  14. Kunanopparat T, Menut P, Morel MH, Guilbert S (2008) Reinforcement of plasticized wheat gluten with natural fibers: from mechanical improvement to deplasticizing effect. Compos A 39:777–785

    Article  Google Scholar 

  15. Tunc S, Angellier H, Cahyana Y, Chalier P, Gontard N, Gastaldi E (2007) Functional properties of wheat gluten/montmorillonite nanocomposite films processed by casting. J Memb Sci 289:159–168

    Article  CAS  Google Scholar 

  16. Yang W, Kenny JM, Puglia D (2015) Structure and properties of biodegradable wheat gluten bionanocomposites containing lignin nanoparticles. Ind Crops Prod 74:348–356

    Article  CAS  Google Scholar 

  17. Poompradub S, Ikeda Y, Kokubo Y, Shiono T (2008) Cuttlebone as reinforcing filler for natural rubber. Eur Polym J 44:4157–4164

    Article  CAS  Google Scholar 

  18. Zhi SH, Wan LS, Xu ZK (2014) Poly(vinylidene fluoride)/poly(acrylicacid)/calciumcarbonate composite membranes via mineralization. J Memb Sci 454:144–154

    Article  CAS  Google Scholar 

  19. Zuo M, Lai ZZ, Song YH, Zheng Q (2008) Preparation and properties of gluten/calcium carbonate composites. Chin Chem Lett 19:992–995

    Article  CAS  Google Scholar 

  20. Brzezinska MS, Walczak M, Lalke-Porczyk E, Donderski W (2010) Utilization of shrimp-shell waste as a substrate for the activity of chitinases produced by microorganisms. J Environ Stud 19:177–182

    CAS  Google Scholar 

  21. Kumari S, Rath P, Sri Hari Kumar A (2016) Chitosan from shrimp shell (Crangon crangon) and fish scales (Labeorohita): Extraction and characterization. Afr J Biotechnol 15(24):1258–1268

    Article  CAS  Google Scholar 

  22. Sachindra NM, Mahendrakar NS (2005) Process optimization for extraction of carotenoids from shrimp waste with vegetable oils. Bioresour Tech 96:1195–1200

    Article  CAS  Google Scholar 

  23. Yang L, Zhang A, Zheng X (2009) Shrimp shell catalyst for biodiesel production. Energ Fuel 23:3859–3865

    Article  CAS  Google Scholar 

  24. Li HY, Tan YQ, Zhang L, Zhang YX, Song YH, Ye Y, Xia MS (2012) Bio-filler from waste shellfish shell: preparation, characterization, and its effect on the mechanical properties on polypropylene composites. J Hazard Mater 217–218:256–262

    Article  Google Scholar 

  25. Verma D, Tomar V (2015) An investigation into mechanical strength of exoskeleton of hydrothermal vent shrimp (Rimicaris exoculata) and shallow water shrimp (Pandalus platyceros) at elevated temperatures. Mater Sci Eng C 49:243–250

    Article  CAS  Google Scholar 

  26. Cho YI, No HK, Meyers SP (1998) Physicochemical characteristics and functional properties of various commercial chitin and chitosan products. J Agric Food Chem 46:3839–3843

    Article  CAS  Google Scholar 

  27. Sachindra NM, Bhaskar N (2008) In vitro antioxidant activity of liquor from fermented shrimp biowaste. Bioresour Tech 99:9013–9016

    Article  CAS  Google Scholar 

  28. Ji G, Zhu H, Jiang X, Qi C, Zhang XM (2009) Mechanical strengths of epoxy resin composites reinforced by calcined pearl shell powders. J Appl Polym Sci 114:3168–3176

    Article  CAS  Google Scholar 

  29. Park SK, Hettiarachchy NS, Were L (2000) Degradation behavior of soy protein-wheat gluten films in simulated soil conditions. J Agric Food Chem 48:3027–3031

    Article  CAS  Google Scholar 

  30. Lee YS, Hanna MA (2009) Tapioca starch-poly(lactic acid)-cloisite 30B nanocomposite foams. Polym Compos 30:665–672

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prince of Songkla University and Faculty of Science for the financial support (158005). We thank Charoen Pokphand Food Public Co., Ltd. for shrimp shell. Thanks also to Mr. Thomas Duncan Coyne for assistance with the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaewta Kaewtatip.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thammahiwes, S., Riyajan, SA. & Kaewtatip, K. Effect of Shrimp Shell Waste on the Properties of Wheat Gluten Based-Bioplastics. J Polym Environ 26, 1775–1781 (2018). https://doi.org/10.1007/s10924-017-1079-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1079-1

Keywords

Navigation