Journal of Polymers and the Environment

, Volume 26, Issue 5, pp 1755–1774 | Cite as

Styrene/Lignin-Based Polymeric Composites Obtained Through a Sequential Mass-Suspension Polymerization Process

  • Priscilla Araújo Victor
  • Sílvia Belém Gonçalves
  • Fabricio Machado
Original Paper


A modified sequential mass-suspension polymerization was employed to ensure adequate dispersion of lignin into the monomeric phase. Due to its complex macromolecular structure and low compatibility with styrene, eucalyptus wood-extracted lignin, via a modified Kraft method, was esterified with methacrylic anhydride to ensure organic phase homogeneity into the reaction medium. Infrared spectroscopy showed a decrease in the hydroxyl band, a characteristic of natural lignin (3200–3400 cm−1) and an increase in the characteristic ester band (1720–1740 cm−1) whereas nuclear magnetic resonance measurements exhibited intense peaks in the range from 1.7 to 2.05 ppm (–CH3) and 5.4 to 6.2 ppm (=CH2), related to methacrylic anhydride. Comparatively, the esterified lignin also displayed an increase of its glass transition temperature for 98 °C, related to natural lignin, whose T g was determined to be equal to 91 °C. Styrene/lignin-based polymers exhibited higher average molar masses in comparison to the values observed for polystyrene synthesized with similar amounts of benzoyl peroxide, due to the ability of lignin to act as a free-radical scavenger. Composites obtained with styrene and natural or esterified lignin were successfully synthesized, presenting regular morphology and proper lignin dispersion. Based on a very simple polymerization system, it is possible to enhance the final properties of polystyrene through the incorporation of lignin, which represents an important platform for developing attractive polymeric materials from renewable resources.


Styrene Lignin Polymer composites Sequential mass-suspension polymerization 



The authors thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Embrapa for the research support.


  1. 1.
    Borsoi C, Scienza LC, Zattera AJ, Angrizani CC (2011) Obtenção e caracterização de compósitos utilizando poliestireno como matriz e resíduos de fibras de algodão da indústria têxtil como reforço. Polímeros 21:271–279CrossRefGoogle Scholar
  2. 2.
    Santos RPO, Rodrigues BVM, Ramires EC, Ruvolo-Filho AC, Frollini E (2015) Bio-based materials from the electrospinning of lignocellulosic sisal fibers and recycled PET. Ind Crops Prod 72:69–76CrossRefGoogle Scholar
  3. 3.
    Gordobil O, Delucis R, Egüés I, Labidi J (2015) Kraft lignin as filler in PLA to improve ductility and thermal properties. Ind Crops Prod 72:46–53CrossRefGoogle Scholar
  4. 4.
    Soroudi A, Jakubowicz I (2013) Recycling of bioplastics, their blends and biocomposites: a review. Eur Polym J 49:2839–2858CrossRefGoogle Scholar
  5. 5.
    Ayoub A, Venditti RA, Jameel H, Chang H-M (2014) Effect of irradiation on the composition and thermal properties of softwood kraft lignin and styrene grafted lignin. J Appl Polym Sci 131:39743CrossRefGoogle Scholar
  6. 6.
    Barton Ii FE (1988) Chemistry of lignocellulose: methods of analysis and consequences of structure. Anim Feed Sci Technol 21:279–286CrossRefGoogle Scholar
  7. 7.
    Doherty WOS, Mousavioun P, Fellows CM (2011) Value-adding to cellulosic ethanol: Lignin polymers. Ind Crops Prod 33:259–276CrossRefGoogle Scholar
  8. 8.
    Lewis NG, Yamamoto E (1990) Lignin: Occurrence, Biogenesis and Biodegradation. Annu Rev Plant Physiol Plant Mol Biol 41:455–496CrossRefGoogle Scholar
  9. 9.
    F.d. Oliveira, Ramires EC, Frollini E, Belgacem MN (2015) Lignopolyurethanic materials based on oxypropylated sodium lignosulfonate and castor oil blends. Ind Crops Prod 72:77–86CrossRefGoogle Scholar
  10. 10.
    Sun XS, Richard P. Wool (2005) Lignin polymers and composites. In: Books E.S.T. (ed) Bio-Based Polymers and Composites. Elsevier, Amsterdam, pp 551–598Google Scholar
  11. 11.
    Chauhan M, Gupta M, Singh B, Singh AK, Gupta VK (2014) Effect of functionalized lignin on the properties of lignin-isocyanate prepolymer blends and composites. Eur Polym J 52:32–43CrossRefGoogle Scholar
  12. 12.
    Cohen JL, Fong GP (1975) Source of selectivity in the quantitative determination of alcohols by acylation with cyclic anhydrides. Anal Chem 47:313–316CrossRefGoogle Scholar
  13. 13.
    Fox C (2006) Chemical and Thermal Characterization of Three Industrial Lignins and their Corresponding Lignin Esters. College of Graduate Studies, University of Idaho, MoscowGoogle Scholar
  14. 14.
    Thielemans W, Can E, Morye SS, Wool RP (2002) Novel applications of lignin in composite materials. J Appl Polym Sci 83:323–331CrossRefGoogle Scholar
  15. 15.
    Wachowiak R, Connors KA (1979) N-Methylimidazole-catalyzed acetylation of hydroxy compounds prior to gas chromatographic separation and determination. Anal Chem 51:27–30CrossRefGoogle Scholar
  16. 16.
    Bittner AS, Harris LE, Campbell WF (1980) Rapid N-methylimidazole-catalyzed acetylation of plant cell wall sugars. J Agric Food Chem 28:1242–1245CrossRefGoogle Scholar
  17. 17.
    Dee LA, Biggers BL, Fiske ME (1980) N-Methylimidazole as a catalyst for acetylation of hydroxyl terminated polymers. Anal Chem 52:572–573CrossRefGoogle Scholar
  18. 18.
    Holmberg AL, Nguyen NA, Karavolias MG, Reno KH, Wool RP, Epps TH (2016) Softwood lignin-based methacrylate polymers with tunable thermal and viscoelastic properties. Macromolecules 49:1286–1295CrossRefGoogle Scholar
  19. 19.
    Jiang C, He H, Yao X, Yu P, Zhou L, Jia D (2015) In situ dispersion and compatibilization of lignin/epoxidized natural rubber composites: reactivity, morphology and property. J Appl Polym Sci 132:42044Google Scholar
  20. 20.
    Hilburg SL, Elder AN, Chung H, Ferebee RL, Bockstaller MR, Washburn NR (2014) A universal route towards thermoplastic lignin composites with improved mechanical properties. Polymer 55:995–1003CrossRefGoogle Scholar
  21. 21.
    Shah T, Gupta C, Ferebee RL, Bockstaller MR, Washburn NR (2015) Extraordinary toughening and strengthening effect in polymer nanocomposites using lignin-based fillers synthesized by ATRP. Polymer 72:406–412CrossRefGoogle Scholar
  22. 22.
    Dallmeyer I, Lin LT, Li Y, Ko F, Kadla JF (2014) Preparation and characterization of interconnected, kraft lignin-based carbon fibrous materials by electrospinning. Macromol Mater Eng 299:540–551CrossRefGoogle Scholar
  23. 23.
    Fernandes EM, Pires RA, Mano JF, Reis RL (2013) Bionanocomposites from lignocellulosic resources: properties, applications and future trends for their use in the biomedical field. Prog Polym Sci 38:1415–1441CrossRefGoogle Scholar
  24. 24.
    Kun D, Pukánszky B (2017) Polymer/lignin blends: interactions, properties, applications. Eur Polym J. doi: 10.1016/j.eurpolymj.2017.04.035
  25. 25.
    Gouveia ER, R.T.d. Nascimento, Souto-Maior AM, G.J.d.M. Rocha (2009) Validação de metodologia para a caracterização química de bagaço de cana-de-açúcar. Química Nova 32:1500–1503CrossRefGoogle Scholar
  26. 26.
    Saliba EOS, Rodriguez NM, de Morais SAL, Piló-Veloso D (2001) Ligninas: métodos de obtenção e caracterização química. Ciência Rural 31:917–928CrossRefGoogle Scholar
  27. 27.
    Campelo NM, Machado F (2013) Reciclagem de Poli(estireno-divinilbenzeno) via Processo de Polimerização em Massa-Suspensão. Polímeros 23:212–222Google Scholar
  28. 28.
    Machado F, Lima EL, Pinto JC (2007) Uma revisão sobre os processos de polimerização em suspensão. Polímeros 17:166–179CrossRefGoogle Scholar
  29. 29.
    Pinto MCC, Santos JGF, Machado F, Pinto JC (2002) Suspension Polymerization Processes, Encyclopedia of Polymer Science and Technology. Wiley, HobokenGoogle Scholar
  30. 30.
    Wexler AS (1964) Characterization of lignosulfonates by ultraviolet spectrometry: direct and difference spectrograms. Anal Chem 36:213–221CrossRefGoogle Scholar
  31. 31.
    Thielemans W, Wool RP (2005) Lignin esters for use in unsaturated thermosets: lignin modification and solubility modeling. Biomacromolecules 6:1895–1905CrossRefGoogle Scholar
  32. 32.
    Connors KA, Pandit NK (1978) N-Methylimidazole as a catalyst for analytical acetylations of hydroxy compounds. Anal Chem 50:1542–1545CrossRefGoogle Scholar
  33. 33.
    de Morais SAL, do Nascimento EA, de Melo DC (2005) Análise da madeira do Pinus oocarpa parte II : caracterização estrutural da lignina de madeira moída. Rev Árvore 29:471–478CrossRefGoogle Scholar
  34. 34.
    Boeriu CG, Fiţigău FI, R.J.A. Gosselink, Frissen AE, Stoutjesdijk J, Peter F (2014) Fractionation of five technical lignins by selective extraction in green solvents and characterisation of isolated fractions. Ind Crops Prod 62:481–490CrossRefGoogle Scholar
  35. 35.
    Yu Y, Li X, Su L, Zhang Y, Wang Y, Zhang H (2012) The role of shape selectivity in catalytic fast pyrolysis of lignin with zeolite catalysts. Appl Catal A 447–448:115–123CrossRefGoogle Scholar
  36. 36.
    Gordobil O, Egüés I, Llano-Ponte R, Labidi J (2014) Physicochemical properties of PLA lignin blends. Polym Degrad Stab 108:330–338CrossRefGoogle Scholar
  37. 37.
    Monteil-Rivera F, Paquet L (2015) Solvent-free catalyst-free microwave-assisted acylation of lignin. Ind Crops Prod 65:446–453CrossRefGoogle Scholar
  38. 38.
    Sai Ram M, Palaniappan S (2003) Benzoyl peroxide oxidation route to polyaniline salt and its use as catalyst in the esterification reaction. J Mol Catal A 201:289–296CrossRefGoogle Scholar
  39. 39.
    Odian G (2004) Principles of polimerization. Wiley, HobokenCrossRefGoogle Scholar
  40. 40.
    Ockenfels H-M, Uter W, Lessmann H, Schnuch A, Geier J (2009) Patch testing with benzoyl peroxide: reaction profile and interpretation of positive patch test reactions. Contact Dermat 61:209–216CrossRefGoogle Scholar
  41. 41.
    Dashtban M, Schraft H, Syed TA, Qin W (2010) Fungal biodegradation and enzymatic modification of lignin. Int J Biochem Mol Biol 1:36–50Google Scholar
  42. 42.
    Koduri RS, Tien M (1995) Oxidation of guaiacol by lignin peroxidase: role of veratryl alcohol. J Biol Chem 270:22254–22258CrossRefGoogle Scholar
  43. 43.
    Lange H, Decina S, Crestini C (2013) Oxidative upgrade of lignin: recent routes reviewed. Eur Polym J 49:1151–1173CrossRefGoogle Scholar
  44. 44.
    Chatel G, Rogers RD (2014) Review: oxidation of lignin using ionic liquids: an innovative strategy to produce renewable chemicals. ACS Sustain Chem Eng 2:322–339CrossRefGoogle Scholar
  45. 45.
    Behling R, Valange S, Chatel G (2016) Heterogeneous catalytic oxidation for lignin valorization into valuable chemicals: what results? What limitations? What trends? Green Chem 18:1839–1854CrossRefGoogle Scholar
  46. 46.
    Crestini C, Crucianelli M, Orlandi M, Saladino R (2010) Oxidative strategies in lignin chemistry: a new environmental friendly approach for the functionalisation of lignin and lignocellulosic fibers. Catal Today 156:8–22CrossRefGoogle Scholar
  47. 47.
    Ma R, Xu Y, Zhang X (2015) Catalytic oxidation of biorefinery lignin to value-added chemicals to support sustainable biofuel production. ChemSusChem 8:24–51CrossRefGoogle Scholar
  48. 48.
    Aranha IB, Lucas EF (2001) Poli(Álcool Vinílico) Modificado com Cadeias Hidrocarbônicas: Avaliação do Balanço Hidrófilo/Lipófilo. Polímeros 11:174–181CrossRefGoogle Scholar
  49. 49.
    Geller BE, Shcherbina LA, Korotkaya ON (2000) Effect of the acidity of the reaction medium on homophase copolymerization of acrylonitrile, methyl acrylate, and 2-acrylamide-2-methylphopanesulfonic acid in hydrotropic solvents, Fibre. Chemistry 32:111–115Google Scholar
  50. 50.
    Araujo RT, Ferreira GR, Segura T, Souza FG, Machado F (2015) An experimental study on the synthesis of poly(vinyl pivalate)-based magnetic nanocomposites through suspension polymerization process. Eur Polym J 68:441–459CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Instituto de QuímicaUniversidade de BrasíliaBrasíliaBrazil
  2. 2.Embrapa AgroenergiaParque Estação BiológicaBrasíliaBrazil

Personalised recommendations