Skip to main content

Advertisement

Log in

Crosslinking of Polyvinyl Alcohol (PVA) and Effect of Crosslinker Shape (Aliphatic and Aromatic) Thereof

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In the presented work, the effect of crosslinker geometry on the properties of PVA is reported. The aliphatic (suberic) and aromatic (terephthalic) dicarboxylic acids are used as crosslinker molecules. On the basis of tensile test and thermal properties, it is observed that crosslinking of PVA by suberic acid is more effective than terephthalic acid. The maximum strength measured in crosslinked samples is 32.5 MPa for suberic acid crosslinked PVA which is higher than that of neat PVA (22.6 MPa). Swelling study shows that 8 h crosslinked terephthalic acid (35% w/w) samples have a minimum of 5.4% of water uptake compared to neat PVA, which dissolves readily in water. DTGA shows that the decomposition temperature of crosslinked PVA is 345 °C while neat PVA has a decomposition temperature of 315 °C. FTIR spectroscopy confirms the formation of crosslink ester bond in crosslinked PVA. The crosslinked samples kept for bio-degradation show maximum degradation in terephthalic acid (15% w/w) crosslinked PVA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Horii F, Masuda K (1998) Chap. 19 Hydrogen-bonded polymers. In: Isao A, Tetsou A (eds) Studies in physical and theoretical chemistry, vol 84. Elsevier, Amsterdam, pp 713–736

    Google Scholar 

  2. Earl PA (1965) Polyvinyl acetate and polyvinyl alcohol adhesives. US3213051 A (US patent)

  3. Zaisheng Cai, Yiping Qiu, Chuyang Zhang, Hwang Y-J, Mccord M (2003) Effect of atmospheric plasma treatment on desizing of PVA on cotton. Text Res J 73(8):670–674

    Article  CAS  Google Scholar 

  4. Rosenblatt KM, Bunjes H (2009) Poly(vinyl alcohol) as emulsifier stabilizes solid triglyceride drug carrier nanoparticles in the α-modification. Mol Pharm 6(1):105–120

    Article  CAS  Google Scholar 

  5. Bolto B, Tran T, Hoang M, Xie Z (2009) Crosslinked poly(vinyl alcohol) membranes. Prog Polym Sci 34(9):969–981

    Article  CAS  Google Scholar 

  6. Oshima K, Iwasaki S (1990) Pneumatic radial tires with a folded belt and high strength vinylon fiber cords. US4971127 A (US patent)

  7. Mohanty S, Larsen LB, Trifol J, Szabo P, Burri HVR, Canali C, Dufva M, Emnéus J, Wolff A (2015) Fabrication of scalable and structured tissue engineering scaffolds using water dissolvable sacrificial 3D printed moulds. Mater Sci Eng C 55:569–578

    Article  CAS  Google Scholar 

  8. Heydari M, Moheb A, Ghiaci M, Masoomi M (2013) Effect of crosslinking time on the thermal and mechanical properties and pervaporation performance of poly(vinyl alcohol) membrane crosslinked with fumaric acid used for dehydration of isopropanol. J Appl Polym Sci 128(3):1640–1651

    CAS  Google Scholar 

  9. Işıklan N, Şanlı O (2005) Separation characteristics of acetic acid–water mixtures by pervaporation using poly(vinyl alcohol) membranes modified with malic acid. Chem Eng Process 44(9):1019–1027

    Article  Google Scholar 

  10. Caro SV, Sung CSP, Merrill EW (1976) Reaction of hexamethylene diisocyanate with polyvinyl alcohol films for biomedical applications. J Appl Polym Sci 20(12):3241–3246

    Article  CAS  Google Scholar 

  11. Arranz F, Sánchez-Chaves M, Martínez R (1987) Reaction of poly(vinyl alcohol) with n-butyl isocyanate. Chemical hydrolysis of the resulting polymers. Die Angewandte Makromolekulare Chemie 152(1):79–91

    Article  CAS  Google Scholar 

  12. Arranz F, Bejarano EM, Sanchez-Chaves M (1994) Poly(vinyl alcohol) functionalized by chloroacetate groups. Coupling of bioactive carboxylic acids. Macromol Chem Phys 195(12):3789–3798

    Article  CAS  Google Scholar 

  13. Ichimura K, Watanabe S (1982) Preparation and characteristics of photocrosslinkable poly(vinyl alcohol). J Polym Sci 20(6):1419–1432

    CAS  Google Scholar 

  14. Ichimura K (1982) Preparation of water-soluble photoresist derived from poly(vinyl alcohol). J Polym Sci 20(6):1411–1417

    CAS  Google Scholar 

  15. Sonker AK, Tiwari N, Nagarale RK, Verma V (2016) Synergistic effect of cellulose nanowhiskers reinforcement and dicarboxylic acids crosslinking towards polyvinyl alcohol properties. J Polym Sci 54(16):2515–2525

    Article  CAS  Google Scholar 

  16. Suzuki T, Ichihara Y, Yamada M, Tonomura K (1973) Some characteristics of Pseudomonas 0–3 which utilizes polyvinyl alcohol. Agric Biol Chem 37(4):747–756

    CAS  Google Scholar 

  17. Chiellini E, Corti A, D’Antone S, Solaro R (2003) Biodegradation of poly (vinyl alcohol) based materials. Prog Polym Sci 28(6):963–1014

    Article  CAS  Google Scholar 

  18. Figueiredo KCS, Alves TLM, Borges CP (2009) Poly(vinyl alcohol) films crosslinked by glutaraldehyde under mild conditions. J Appl Polym Sci 111(6):3074–3080

    Article  CAS  Google Scholar 

  19. Campos E, Coimbra P, Gil MH (2013) An improved method for preparing glutaraldehyde crosslinked chitosan–poly(vinyl alcohol) microparticles. Polym Bull 70(2):549–561

    Article  CAS  Google Scholar 

  20. Beydaghi H, Javanbakht M, Badiei A (2014) Crosslinked poly(vinyl alcohol)/sulfonated nanoporous silica hybrid membranes for proton exchange membrane fuel cell. J Nanostruct Chem 4(2):1–9

    Article  Google Scholar 

  21. Peng F, Hu C, Jiang Z (2007) Novel ploy(vinyl alcohol)/carbon nanotube hybrid membranes for pervaporation separation of benzene/cyclohexane mixtures. J Membr Sci 297(1–2):236–242

    Article  CAS  Google Scholar 

  22. Namboodiri VV, Ponangi R, Vane LM (2006) A novel hydrophilic polymer membrane for the dehydration of organic solvents. Eur Polym J 42(12):3390–3393

    Article  CAS  Google Scholar 

  23. Wang X, Fang D, Yoon K, Hsiao BS, Chu B (2006) High performance ultrafiltration composite membranes based on poly(vinyl alcohol) hydrogel coating on crosslinked nanofibrous poly(vinyl alcohol) scaffold. J Membr Sci 278(1–2):261–268

    CAS  Google Scholar 

  24. Zhang Y, Li H, Li H, Li R, Xiao C (2006) Preparation and characterization of modified polyvinyl alcohol ultrafiltration membranes. Desalination 192(1–3):214–223

    Article  CAS  Google Scholar 

  25. Liu Q-L, Li Q-B (2002) Membrane of PVA coated on porous catalytic ceramic disks supported H3PW12O40. J Membr Sci 202(1–2):89–95

    Article  Google Scholar 

  26. Huang RYM, Rhim JW (1993) Modification of poly(vinyl alcohol) using maleic acid and its application to the separation of acetic acid-water mixtures by the pervaporation technique. Polym Int 30(1):129–135

    Article  CAS  Google Scholar 

  27. Rhim J-W, Park HB, Lee C-S, Jun J-H, Kim DS, Lee YM (2004) Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group: proton and methanol transport through membranes. J Membr Sci 238(1–2):143–151

    Article  CAS  Google Scholar 

  28. Dlamini DS, Wang J, Mishra AK, Mamba BB, Hoek EMV (2013) Effect of crosslinking agent chemistry and coating conditions on physical, chemical, and separation properties of PVA-Psf composite membranes. Sep Sci Technol 49(1):22–29

    Article  Google Scholar 

  29. Jian S, Xiao Ming S (1987) Crosslinked PVA-PS thin-film composite membrane for reverse osmosis. Desalination 62(0):395–403

    Article  Google Scholar 

  30. Krumova M, López D, Benavente R, Mijangos C, Pereña JM (2000) Effect of crosslinking on the mechanical and thermal properties of poly(vinyl alcohol). Polymer 41(26):9265–9272

    Article  CAS  Google Scholar 

  31. Miyazaki T, Takeda Y, Akane S, Itou T, Hoshiko A, En K (2010) Role of boric acid for a poly (vinyl alcohol) film as a crosslinking agent: melting behaviors of the films with boric acid. Polymer 51(23):5539–5549

    Article  CAS  Google Scholar 

  32. Wan YZ, Luo H, He F, Liang H, Huang Y, Li XL (2009) Mechanical, moisture absorption, and biodegradation behaviours of bacterial cellulose fibre-reinforced starch biocomposites. Compos Sci Technol 69(7–8):1212–1217

    Article  CAS  Google Scholar 

  33. Miao T, Miller EJ, McKenzie C, Oldinski RA (2015) Physically crosslinked polyvinyl alcohol and gelatin interpenetrating polymer network theta-gels for cartilage regeneration. J Mater Chem B 3(48):9242–9249

    Article  CAS  Google Scholar 

  34. Cutiongco MF, Choo RK, Shen NJ, Chua BM, Sju E, Choo AW, Le Visage C, Yim EK (2015) Composite scaffold of poly(vinyl alcohol) and interfacial polyelectrolyte complexation fibers for controlled biomolecule delivery. Front Bioeng Biotechnol 3:3

    Article  Google Scholar 

  35. Kim JH, Moon EJ, Kim CK (2003) Composite membranes prepared from poly(m-animostyrene-co-vinyl alcohol) copolymers for the reverse osmosis process. J Membr Sci 216(1–2):107–120

    Article  CAS  Google Scholar 

  36. Blout ER, Karplus R (1948) The infrared spectrum of polyvinyl alcohol. J Am Chem Soc 70(2):862–864

    Article  CAS  Google Scholar 

  37. Refojo MF (1965) Permeation of water through some hydrogels. J Appl Polym Sci 9(10):3417–3426

    Article  CAS  Google Scholar 

  38. Yasuda H, Lamaze CE, Peterlin A (1971) Diffusive and hydraulic permeabilities of water in water-swollen polymer membranes. J Polym Sci Part A-2 9(6):1117–1131

    Article  CAS  Google Scholar 

  39. Yasuda H, Lamaze CE (1971) Salt rejection by polymer membranes in reverse osmosis. I. Nonionic polymers. J Polym Sci Part A-2 9(9):1537–1551

    Article  CAS  Google Scholar 

  40. Gohil JM, Bhattacharya A, Ray P (2006) Studies on the crosslinking of poly (vinyl alcohol). J Polym Res 13(2):161–169

    Article  CAS  Google Scholar 

  41. Flory PJ, Rehner J (1943) Statistical mechanics of cross-linked polymer networks II. swelling. J Chem Phys 11(11):521–526

    Article  CAS  Google Scholar 

  42. Yang M-H, Chu T-J (1993) The determination of interaction parameter χ1 for polyvinyl alcohol and water from the diffusion data. Polym Test 12(1):57–64

    Article  CAS  Google Scholar 

  43. Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E (2010) Theoretical description of hydrogel swelling: a review. Iran Polym J 19(5):375–398

    CAS  Google Scholar 

  44. Mooney RCL (1941) An X-ray study of the structure of polyvinyl alcohol. J Am Chem Soc 63(10):2828–2832

    Article  CAS  Google Scholar 

  45. Assender HE, Windle AH (1998) Crystallinity in poly(vinyl alcohol). 1. An X-ray diffraction study of atactic PVOH. Polymer 39(18):4295–4302

    Article  CAS  Google Scholar 

  46. Ahmad J, Hägg M-B (2013) Preparation and characterization of polyvinyl acetate/zeolite 4 A mixed matrix membrane for gas separation. J Membr Sci 427:73–84

    Article  CAS  Google Scholar 

  47. Ahmad J, Hågg MB (2013) Polyvinyl acetate/titanium dioxide nanocomposite membranes for gas separation. J Membr Sci 445:200–210

    Article  CAS  Google Scholar 

  48. Bunn CW (1948) Crystal structure of polyvinyl alcohol. Nature 161:929–930

    Article  CAS  Google Scholar 

  49. Post B (1971) X-ray diffraction methods in polymer science, Leroy E. Alexander, wiley-interscience, new york, 1970. xv + 582 pp. J Polym Sci Part B 9(8):635–636

    Article  Google Scholar 

Download references

Acknowledgements

RKN thanks the Department of Science & Technology (DST), Government of India, for Ramanujan Fellowship (SR/S2/RJN-18/2011) award. The work is funded by Science and Engineering Research Board (SERB) SR/S3/CE/038/2012 granted to VV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Verma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 942 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonker, A.K., Rathore, K., Nagarale, R.K. et al. Crosslinking of Polyvinyl Alcohol (PVA) and Effect of Crosslinker Shape (Aliphatic and Aromatic) Thereof. J Polym Environ 26, 1782–1794 (2018). https://doi.org/10.1007/s10924-017-1077-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1077-3

Keywords

Navigation