Journal of Polymers and the Environment

, Volume 26, Issue 4, pp 1702–1714 | Cite as

Antibacterial and Structural Properties and Printability of Starch/Clay/Polyethylene Composite Films

Original Paper


A composite of thermoplastic starch (TPS), low-density polyethylene (LDPE) and citric acid-modified montmorillonite (CMMT) was prepared in a twin screw extruder for packaging film application. Starch was first converted to the thermoplastic state by using sorbitol and water. Composite films were produced on a chill roll system and then were modified for printability by grafting of acrylonitrile onto the starch backbone. Antimicrobial property and printability of the films were studied from which the sample with the highest antimicrobial property and the best printability was selected. This optimal sample was then characterized by Fourier transform infrared, thermal gravimetric analysis, differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy. The composite film showed a matrix/dispersed morphology in which LDPE formed a continuous phase and TPS/CMMT nanocomposite particles appeared as dispersed phase. Biodegradability, water absorption, oxygen permeability, tensile strength and transparency of optimal film were also studied. The results indicated very good properties of the produced composite film for packaging application.

Graphical Abstract


Starch Polyethylene Clay Antimicrobial property Printability Packaging film 


  1. 1.
    Navarchian AH, Sharafi A, Kermanshahi RK (2013) Biodegradation study of starch-GRAFT-acrylonitrile copolymer. J Polym Environ 21(1):233–244CrossRefGoogle Scholar
  2. 2.
    Acosta S, Jiménez A, Cháfer M, González-Martínez C, Chiralt A (2015) Physical properties and stability of starch-gelatin based films as affected by the addition of esters of fatty acids. Food Hydrocoll 49:135–143CrossRefGoogle Scholar
  3. 3.
    Xie F, Pollet E, Halley PJ, Averous L (2013) Starch-based nano-biocomposites. Prog Polym Sci 38(10):1590–1628CrossRefGoogle Scholar
  4. 4.
    Teodoro AP, Mali S, Romero N, de Carvalho GM (2015) Cassava starch films containing acetylated starch nanoparticles as reinforcement: physical and mechanical characterization. Carbohydr Polym 126:9–16CrossRefGoogle Scholar
  5. 5.
    Oleyaei SA, Zahedi Y, Ghanbarzadeh B, Moayedi AA (2016) Modification of physicochemical and thermal properties of starch films by incorporation of TiO2 nanoparticles. Int J Biol Macromol 31(89):256–264CrossRefGoogle Scholar
  6. 6.
    El-Hamshary H, Fouda MM, Moydeen M, El-Newehy MH, Al-Deyab SS, Abdel-Megeed A (2015) Synthesis and antibacterial of carboxymethyl starch-grafted poly (vinyl imidazole) against some plant pathogens. Int J Biol Macromol 31(72):1466–1472CrossRefGoogle Scholar
  7. 7.
    Lai SM, Sun WW, Don TM (2015) Preparation and characterization of biodegradable polymer blends from poly (3-hydroxybutyrate)/poly (vinyl acetate)-modified corn starch. Polym Eng Sci 55(6) 1321–1329CrossRefGoogle Scholar
  8. 8.
    Sabetzadeh M, Bagheri R, Masoomi M (2015) Study on ternary low density polyethylene/linear low density polyethylene/thermoplastic starch blend films. Carbohydr Polym 119:126–133CrossRefGoogle Scholar
  9. 9.
    Nguyen DM, Do TV, Grillet AC, Thuc HH, Thuc CN (2016) Biodegradability of polymer film based on low density polyethylene and cassava starch. Int Biodeterior Biodegrad 115:257–265CrossRefGoogle Scholar
  10. 10.
    Thipmanee R, Lukubira S, Ogale AA, Sane A (2016) Enhancing distributive mixing of immiscible polyethylene/thermoplastic starch blend through zeolite ZSM-5 compounding sequence. Carbohydr polym 136:812–819CrossRefGoogle Scholar
  11. 11.
    Majdzadeh-Ardakani K, Navarchian AH, Sadeghi F (2010) Optimization of mechanical properties of thermoplastic starch/clay nanocomposites. Carbohydr Polym 79:547–554CrossRefGoogle Scholar
  12. 12.
    Navarchian AH, Jalalian M, Pirooz M (2015) Characterization of starch/poly (vinyl alcohol)/clay nanocomposite films prepared in twin-screw extruder for food packaging application. J Plastic Film Sheeting 31(3):309–336CrossRefGoogle Scholar
  13. 13.
    Sabetzadeh M, Bagheri R, Masoomi M (2016) Effect of nanoclay on the properties of low density polyethylene/linear low density polyethylene/thermoplastic starch blend films. Carbohydr Polym 141:75–81CrossRefGoogle Scholar
  14. 14.
    Ramos M, Beltran A, Valdes A, Peltzer MA, Jimenez A (2013) Carvacrol and thymol for fresh food packaging. J Bioequivalence Bioavail 5:154–160CrossRefGoogle Scholar
  15. 15.
    Bof MJ, Jiménez A, Locaso DE, García MA, Chiralt A (2016) Grapefruit seed extract and lemon essential oil as active agents in corn starch–chitosan blend films. Food Bioprocess Technol 9(12):2033–2045CrossRefGoogle Scholar
  16. 16.
    Guz L, Famá L, Candal R, Goyanes S (2016) Size effect of ZnO nanorods on physicochemical properties of plasticized starch composites. Carbohydr Polym 157:1611–1699CrossRefGoogle Scholar
  17. 17.
    Kuorwel KK, Cran MJ, Sonneveld K, Miltz J, Bigger SW (2011) Antimicrobial activity of natural agents against Saccharomyces cerevisiae. Packag Technol Sci 24(5):299–307CrossRefGoogle Scholar
  18. 18.
    Bhatia S, Bharti A (2015) Evaluating the antimicrobial activity of Nisin, Lysozyme and Ethylenediaminetetraacetate incorporated in starch based active food packaging film. J Food Sci Technol 52(6):3504–3512Google Scholar
  19. 19.
    Haraguchi H, Ohmi I, Fukuda A, Tamura Y, Mizutani K, Tanaka O, Chou WH (1997) Inhibition of aldose reductase and sorbitol accumulation by astilbin and taxifolin dihydroflavonols in Engelhardtia chrysolepis. Biosci Biotechnol Biochem 61(4):651–654CrossRefGoogle Scholar
  20. 20.
    Barr M, Tice LF (1957) A study of the inhibitory concentrations of glycerin-sorbitol and propylene glycol-sorbitol combinations on the growth of microorganisms. J Am Pharm Assoc 46(4):217–218CrossRefGoogle Scholar
  21. 21.
    Ghosh RN, Jana T, Ray BC, Adhikari B (2004) Grafting of vinyl acetate onto low density polyethylene-starch biodegradable films for printing and packaging applications. Polym Int 53(3):339–343CrossRefGoogle Scholar
  22. 22.
    Jana T, Roy BC, Ghosh R, Maiti S (2001) Biodegradable film. IV. Printability study on biodegradable film. J Appl Polym Sci 79(7):1273–1277CrossRefGoogle Scholar
  23. 23.
    Bonev B, Hooper J, Parisot J (2008) Principles of assessing bacterial susceptibility to antibiotics using the agar diffusion method. J Antimicrob Chemother 61(6):1295–1301CrossRefGoogle Scholar
  24. 24.
    Baltch AL, Smith RP (1994) Pseudomonas aeruginosa: infections and treatment. Infect Dis Ther Ser 12Google Scholar
  25. 25.
    Becker K, Friedrich AW, Lubritz G, Weilert M, Peters G, Von Eiff C (2003) Prevalence of genes encoding pyrogenic toxin superantigens and exfoliative toxins among strains of Staphylococcus aureus isolated from blood and nasal specimens. J Clin Microbiol 41(4):1434–1439CrossRefGoogle Scholar
  26. 26.
    Jarraud S, Peyrat MA, Lim A, Tristan A, Bes M, Mougel C, Lina G (2001) Egc, a highly prevalent operon of enterotoxin gene, forms a putative nursery of superantigens in Staphylococcus aureus. J Immunol 166(1):669–677CrossRefGoogle Scholar
  27. 27.
    Chang S, Sievert DM, Hageman JC, Boulton ML, Tenover FC, Downes FP, Fridkin SK (2003) Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N Engl J Med 348(14):1342–1347CrossRefGoogle Scholar
  28. 28.
    Mah TF, Pitts B, Pellock B, Walker GC, Stewart PS, O’Toole GA (2003) A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426(6964):306–310CrossRefGoogle Scholar
  29. 29.
    Waters AE, Contente-Cuomo T, Buchhagen J, Liu CM, Watson L, Pearce K, Price LB (2011) Multidrug-resistant Staphylococcus aureus in US meat and poultry. Clin Infect Dis 52, 1227–1230CrossRefGoogle Scholar
  30. 30.
    Wright A, Hawkins CH, Änggård EE, Harper DR (2009) A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin Otolaryngol 34(4):349–357CrossRefGoogle Scholar
  31. 31.
    Macknight ADC (1988) Principles of cell volume regulation. Kidney Blood Press Res 11(3–5):114–141CrossRefGoogle Scholar
  32. 32.
    Koch AL (1984) Shrinkage of growing Escherichia coli cells by osmotic challenge. J Bacteriol 159(3):919–924Google Scholar
  33. 33.
    Mager J, Kuczynski M, Schatzberg G, Avi-Dor Y (1956) Turbidity changes in bacterial suspensions in relation to osmotic pressure. Microbiology 14(1):69–75Google Scholar
  34. 34.
    Mugnier J, Jung G (1985) Survival of bacteria and fungi in relation to water activity and the solvent properties of water in biopolymer gels. Appl Environ Microbiol 50(1):108–114Google Scholar
  35. 35.
    Mille Y, Beney L, Gervais P (2005) Compared tolerance to osmotic stress in various microorganisms: towards a survival prediction test. Biotechnol Bioeng 92(4):479–484CrossRefGoogle Scholar
  36. 36.
    Heidari-Sureshjani M, Tabatabaei-Yazdi F, Alizadeh-Behbahani B, Mortazavi A (2015) Antimicrobial effect of aqueous, ethanol, methanol and glycerin extracts of Satureja bachtiarica on Streptococcus pyogenes, Pseudomonas aeruginosa and Staphylococcus epidermidis. Zahedan J Res Med Sci 17(7):11–15Google Scholar
  37. 37.
    Singh BR (2014) Antibacterial activity of glycerol, lactose, maltose, mannitol, raffinose and xylose. Noto-are Med 17223318Google Scholar
  38. 38.
    Saegeman VS, Ectors NL, Lismont D, Verduyckt B, Verhaegen J (2008) Short-and long-term bacterial inhibiting effect of high concentrations of glycerol used in the preservation of skin allografts. Burns 34(2):205–211CrossRefGoogle Scholar
  39. 39.
    Ross A, Kearney JN (2004) The measurement of water activity in allogeneic skin grafts preserved using high concentration glycerol or propylene glycol. Cell Tissue Banking 5(1):37–44CrossRefGoogle Scholar
  40. 40.
    Poirier I, Maréchal PA, Gervais P (1997) Effects of the kinetics of water potential variation on bacteria viability. J Appl Microbiol 82(1):101–106CrossRefGoogle Scholar
  41. 41.
    Bikiaris D, Prinos J, Koutsopoulos K, Vouroutzis N, Pavlidou E, Frangis N, Panayiotou C (1998) LDPE/plasticized starch blends containing PE-g-MA copolymer as compatibilizer. Polym Degrad Stab 59(1):287–291CrossRefGoogle Scholar
  42. 42.
    Kaviya S, Santhanalakshmi J, Viswanathan B (2011) Green synthesis of silver nanoparticles using Polyalthia longifolia leaf extract along with D-sorbitol: study of antibacterial activity. J NanotechnolGoogle Scholar
  43. 43.
    Pushpadass HA, Bhandari P, Hanna MA (2010) Effects of LDPE and glycerol contents and compounding on the microstructure and properties of starch composite films. Carbohydr Polym 82(4):1082–1089CrossRefGoogle Scholar
  44. 44.
    Joshi MS, Silverman J, Singer K (1976) Gel formation observed following the radiation grafting of acrylonitrile to polyethylene. J Polym Sci 14(12):723–728Google Scholar
  45. 45.
    Pansare GR, Nagesh N, Bhoraskar VM (1994) A study on grafting of acrylonitrile onto high-density polyethylene by the neutron activation analysis technique. J Phys D 27(4):871CrossRefGoogle Scholar
  46. 46.
    Marans NS (1967) U.S. Patent No. 3,342,900. U.S. Patent and Trademark Office, Washington, DCGoogle Scholar
  47. 47.
    Hebeish A, Abd El-Thalouth I, El-Kashouti MA, Abdel-Fattah SH (1979) Graft copolymerization of acrylonitrile onto starch using potassium permanganate as initiator. Die Angew Makromol Chem 78(1):101–108CrossRefGoogle Scholar
  48. 48.
    Ma X, Yu J, Wang N (2007) Production of thermoplastic starch/mmt-sorbitol nanocomposites by dual-melt extrusion processing. Macromol Mater Eng 292(6):723–728CrossRefGoogle Scholar
  49. 49.
    Masclaux C, Gouanvé F, Espuche E (2010) Experimental and modelling studies of transport in starch nanocomposite films as affected by relative humidity. J Membr Sci 363:221–231CrossRefGoogle Scholar
  50. 50.
    Rodriguez-Gonzalez FJ, Ramsay BA, Favis BD (2003) High performance LDPE/thermoplastic starch blends: a sustainable alternative to pure polyethylene. Polymer 44(5):1517–1526CrossRefGoogle Scholar
  51. 51.
    Beg MDH, Kormin S, Bijarimi M, Zaman HU (2016) Preparation and characterization of low-density polyethylene/thermoplastic starch composites. Adv Polym Technol 35(1):1–9CrossRefGoogle Scholar
  52. 52.
    Peacock A (2000) Handbook of polyethylene: structures: properties, and applications. CRC Press, Boca RatonGoogle Scholar
  53. 53.
    Prasad A, Mowery D (1997) A quantitative analysis of LDPE/LLDPE blend using DSC and FTIR methods. In technical papers of the annual technical conference-society of plastics engineers incorporated. Soc Plast Eng INC 1997(2):2310–2314Google Scholar
  54. 54.
    Liu X, Wang Y, Yu L, Tong Z, Chen L, Liu H, Li X (2013) Thermal degradation and stability of starch under different processing conditions. Starch-Stärke 65(1–2):48–60CrossRefGoogle Scholar
  55. 55.
    Hussein AS, Nadum AA, Faise JM (2011) Thermal properties of low density polyethylene with oyster shell composite: DSC Study. World Appl Sci J 14(11):1730–1733Google Scholar
  56. 56.
    Deng C, Zhao J, Deng CL, Lv Q, Chen L, Wang YZ (2014) Effect of two types of iron MMTs on the flame retardation of LDPE composite. Polym Degrad Stab 103:1–10CrossRefGoogle Scholar
  57. 57.
    Chuayjuljit S, Hosililak S, Athisart A (2009) Thermoplastic cassava starch/sorbitol-modified montmorillonite nanocomposites blended with low density polyethylene: properties and biodegradability study. J Metals Mater Minerals 19(1):59–65Google Scholar
  58. 58.
    Kumar P, Sandeep K, Alavi S, Truong V, Gorga R (2010) Preparation and characterization of bio-nanocomposite films based on soy protein isolate and montmorillonite using melt extrusion. J Food Eng 100:480–489CrossRefGoogle Scholar
  59. 59.
    Lertwimolnun W, Vergnes B (2007) Influence of screw profile and extrusion conditions on the microstructure of polypropylene/organoclay nanocomposites. Polym Eng Sci 47(12):2100–2109Google Scholar
  60. 60.
    Di Y, Iannace S, Maio ED, Nicolais L (2003) Nanocomposites by melt intercalation based on polycaprolactone and organoclay. J Polym Sci Part B 41:670–678Google Scholar
  61. 61.
    Ning W, Jiugao Y, Xiaofei M, Ying W (2007) The influence of citric acid on the properties of thermoplastic starch/linear low-density polyethylene blends. Carbohydr Polym 67(3):446–453Google Scholar
  62. 62.
    Folkes MJ, Hope PS (1993) Polymer blends and alloys. Blackie Academic & Professional, LondonCrossRefGoogle Scholar
  63. 63.
    Lee J, Han C (1999) Evolution of a dispersed morphology from a co-continuous morphology in immiscible polymer blends. Polymer 40(10):2521–2536CrossRefGoogle Scholar
  64. 64.
    Wang S, Yu J, Yu J (2005) Compatible thermoplastic starch/polyethylene blends by one-step reactive extrusion. Polym Int 54(2):279–285CrossRefGoogle Scholar
  65. 65.
    Chen B, Evans J (2005) Thermoplastic starch–clay nanocomposites and their characteristics. Carbohydr Polym 61:455–463CrossRefGoogle Scholar
  66. 66.
    Huang M, Yu J, Ma X (2004) Studies on the properties of montmorillonite-reinforced thermoplastic starch composites. Polymer 45(20):7017–7023Google Scholar
  67. 67.
    Sahari J, Sapuan SM, Zainudin ES, Maleque MA (2012) A new approach to use Arenga pinnata as sustainable biopolymer: effects of plasticizers on physical properties. Procedia Chem 4:254–259CrossRefGoogle Scholar
  68. 68.
    Olsson E, Hedenqvist MS, Johansson C, Järnström L (2013) Influence of citric acid and curing on moisture sorption, diffusion and permeability of starch films. Carbohydr Polym 94(2):765–772CrossRefGoogle Scholar
  69. 69.
    Cheviron P, Gouanvé F, Espuche E (2015) Starch/silver nanocomposite: effect of thermal treatment temperature on the morphology, oxygen and water transport properties. Carbohydr Polym 134:635–645CrossRefGoogle Scholar
  70. 70.
    Sothornvit R, Pitak N (2007) Oxygen permeability and mechanical properties of banana films. Food Res Int 40(3):365–370CrossRefGoogle Scholar
  71. 71.
    Chiellini E, Corti A, D’Antone S, Billingham NC (2007) Microbial biomass yield and turnover in soil biodegradation tests: carbon substrate effects. J Polym Environ 15(3):169–178CrossRefGoogle Scholar
  72. 72.
    Magalhães N, Andrade C (2009) Thermoplastic corn starch/clay hybrids: effect of clay type and content on physical properties. Carbohydr Polym 75:712–718CrossRefGoogle Scholar
  73. 73.
    Arvanitoyannis I, Biliaderis CG, Ogawa H, Kawasaki N (1988) Biodegradable films made from low-density polyethylene (LDPE), rice starch and potato starch for food packaging applications: Part 1. Carbohydr Polym 36(2):89–104Google Scholar
  74. 74.
    Kampeerapappun P, Aht-ong D, Pentrakoon D, Srikulkit K (2007) Preparation of cassava starch/montmorillonite composite film. Carbohydr Polym 67(2):155–163CrossRefGoogle Scholar
  75. 75.
    Garg S, Jana AK (2007) Studies on the properties and characteristics of starch–LDPE blend films using cross-linked, glycerol modified, cross-linked and glycerol modified starch. Eur Polym J 43(9):3976–3987CrossRefGoogle Scholar
  76. 76.
    Raj B, Sankar KU, Ramaiah S (2004) Low density polyethylene/starch blend films for food packaging applications. Adv Polym Tech 23(1):32–45CrossRefGoogle Scholar
  77. 77.
    Avella M, De Vlieger JJ, Errico ME, Fischer S, Vacca P, Volpe MG (2005) Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem 93(3):467–474CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Majid Pirooz
    • 1
  • Amir H. Navarchian
    • 1
  • Giti Emtiazi
    • 2
  1. 1.Department of Chemical Engineering, Faculty of EngineeringUniversity of IsfahanIsfahanIslamic Republic of Iran
  2. 2.Department of Biology, Faculty of SciencesUniversity of IsfahanIsfahanIslamic Republic of Iran

Personalised recommendations