Skip to main content
Log in

Effect of Moringa oleifera Pod Husk Fibers on the Properties of Gelatin-Based Biocomposite

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The objective of this work is to study the feasibility of reinforcing polymer composites by utilizing the biofibers from the agricultural residue of Moringa oleifera pod husks (MOPH). The chemical and physical properties of the fibers were comprehensively investigated to evaluate their potential as a filler in gelatin-based films. The effect of MOPH fiber concentrations of 0, 5, 10, and 15 wt% on the water vapor permeability (WVP), and mechanical and thermal properties of the gelatin-based films was studied. By incorporation of 10 wt% of the MOPH fibers in gelatin, the highest tensile strength and Young’s modulus, and the lowest WVP properties were obtained. Scanning electron microscopy (SEM) photographs indicated good interfacial adhesion between the fibers and the gelatin matrix. TGA of the biocomposites revealed an improvement of thermal stability. Moreover, under accelerated weathering, the gelatin-MOPH-10% biocomposite degraded more slowly than the gelatin control. These results indicate that the MOPH fibers are a good reinforcing filler and may be useful for biocomposite applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nur Hanani ZA, Roos YH, Kerry JP (2014) Int J Biol Macromol 71:94

    Article  CAS  Google Scholar 

  2. Núnez-Flores R, Giménez B, Fernández-Martín F, López-Caballero ME, Montero MP, Gómez-Guillén MC (2012) Food Hydrocolloids 27:60

    Article  Google Scholar 

  3. Zadeh E M, Yu A, Fu L, Dehghan M, Sbarski I, Harding I (2014) Polym Compos 35:2043

    Article  CAS  Google Scholar 

  4. Bergo P, Sobral PJA (2007) Food Hydrocolloids 21:1285

    Article  CAS  Google Scholar 

  5. Wang W, Wang Z, Liu Y, Li N, Wang W, Gao J (2012) Mater Res Bull 47:2245

    Article  CAS  Google Scholar 

  6. Farahnaky A, Dadfar SMM, Shahbazi M (2014) J Food Eng 122:78

    Article  CAS  Google Scholar 

  7. Panzavolta S, Bracci B, Gualandi C, Focarete ML, Treossi E, Kouroupis-Agalou K, Rubini K, Bosia F, Brely L, Pugno NM, Palermo V, Bigi A (2014) Carbon 78:566

    Article  CAS  Google Scholar 

  8. Yu G, Jialiang W, Zixing S, Jie Y (2012) J Mater Chem 22:19

    Article  Google Scholar 

  9. Ran J, Hu J, Chen L, Shen X, Tong H (2015) Polym Compos. doi:10.1002/pc.23725.

    Google Scholar 

  10. Choi HY, Han SO, Lee JS (2008) Appl Surf Sci 255:2466

    Article  CAS  Google Scholar 

  11. Chiellini E, Cinelli P, Fernandes EG, Kenawy ERS, Lazzeri A (2001) Biomacromolecules 2:806

    Article  CAS  Google Scholar 

  12. Takinami PYI, Shimazaki K, Colombo MA, de Moura EAB, del Mastro NL (2010) Rev Mater 15:303

    Google Scholar 

  13. Inamura PY, Kraide FH, Drumond WS, de Lima NB, Moura EAB, del Mastro NL (2013) Radiat Phys Chem 84:66

    Article  CAS  Google Scholar 

  14. Zheng X, Liu J, Pei Y, Li J, Tang K (2012) Compos Part A 43:45

    Article  Google Scholar 

  15. Borugadda VB, Goud VV (2012) Renew Sustain Energy Rev 16:4763

    Article  CAS  Google Scholar 

  16. Hernández E, García A, López M, Puls J, Paraja JC, Martín C (2013) Ind Crops Prod 44:227

    Article  Google Scholar 

  17. Akhtar M, Hasany SM, Bhanger MI, Iqbal S (2007) J Hard Mater 141:546

    Article  CAS  Google Scholar 

  18. Kumar MA, Reddy GR, Rao HR, Reddy KH, Reddy BHN (2012) Int J Polym Mater 61:759

    Article  Google Scholar 

  19. Ge L, Li X, Zhang R, Yang T, Ye X, Li D (2015) Food Hydrocolloids 51:129

    Article  CAS  Google Scholar 

  20. Chiou B-S, Avena-Bustillos RJ, Bechtel PJ, Jafri H, Narayan R, Imam SH, Glenn GM, Orts WJ (2008) Eur Polym J 44:3748

    Article  CAS  Google Scholar 

  21. Kwon H-J, Sunthornvarabhas J, Park J-W, Lee J-H, Kim H-J, Piyachomkwan K, Sriroth K, Cho D (2014) Compos Part B 56:232

    Article  CAS  Google Scholar 

  22. Segal L, Creely JJ, Martin AE, Conrad CM (1959) Text Res J 29(10):786

    Article  CAS  Google Scholar 

  23. Updegraff DM (1969) Anal Biochem 32:420

    Article  CAS  Google Scholar 

  24. Technical Association of the Pulp and Paper Industry (2012) Test method T222 om-11

  25. Wise L E, Murphy M, D’Addieco A (1946) Pap Trade J 122:35

    CAS  Google Scholar 

  26. ShikuY, Hamaguchi PY, BenjakulS, Visessanguan W, Tanaka M (2004) Food Chem 86:493

    Article  Google Scholar 

  27. McHugh TH, Bustillos RA, Krochta JM (1993) J MJ Food Sci 58:899

    Article  CAS  Google Scholar 

  28. Torres-Huerta AM, Palma-Ramírez D, Domínguez-Crespo MA, Angel-López DD, de la Fuente D (2014) Eur Polym J 61285

    Article  CAS  Google Scholar 

  29. Karimi S, Tahir PM, Karimi A, Dufresne A, Abdulkhani A (2014) Carbohydr Polym 101:878

    Article  CAS  Google Scholar 

  30. Xiang LY, Mohammed MAP, Baharuddin AS (2016) Carbohydr Polym 148:11

    Article  CAS  Google Scholar 

  31. Reddy KO, Maheswari CU, Shukla M, Song JI, Rajulu AV (2013) Compos Part B 44:433

    Article  Google Scholar 

  32. d’Almeida JRM, Aquino RCMP, Monteiro SN (2006) Compos Part A 37:1473

    Article  Google Scholar 

  33. Johara N, Ahmada I, Dufresne A (2012) Ind Crops Prod 37:93

    Article  Google Scholar 

  34. Greco A, Gennaro R, Timo A, Bonfantini F, Maffezzoli A (2013) J Polym Environ 21:910

    Article  CAS  Google Scholar 

  35. Reddy KO, Maheswari CU, Reddy DJP, Rajulu AV (2009) Mater lett 63:2390

  36. Ridzuan MJM, Abdul Majid MS, Afendi M, Aqmariah Kanafiah SN, Zahri JM, Gibson AG (2016) Mater Des 89:839

    Article  CAS  Google Scholar 

  37. Nguyen T, Zavarin E, Barral EM, (1981) J Macromol Sci-Rev Macromo Chem C 20:1

    Article  Google Scholar 

  38. Methacanon P, Weerawatsophon U, Sumransin N, Prahsarn C, Bergado DT (2010) Carbohydr Polym 82:1090

    Article  CAS  Google Scholar 

  39. Azwa ZN, Yousif BF, Manalo AC, Karunasena W (2013) Mater Des 47:424

    Article  CAS  Google Scholar 

  40. Kompella MK, Lambros J (2002) Polym Test 21(5):523

    Article  CAS  Google Scholar 

  41. Panthapulakkal S, Zereshkian A, Sain M (2006) Bioresour Technol 97:265

    Article  CAS  Google Scholar 

  42. Pickering KL, Beckermann GW, Alam SN, Foreman NJ (2007) Compos Part A 38:461

    Article  Google Scholar 

  43. Muensri P, Kunanopparat T, Menut P, Siriwattanayotin S (2011) Compos Part A 42:173

    Article  Google Scholar 

  44. Norul Izani MA, Paridah MT, Anwar UMK, Mohd Nor MY, H’ng PS (2013) Compos Part B Eng 45(1):1251

    Article  CAS  Google Scholar 

  45. Wang H, Yao X, Sui G, Yin L, Wang L (2015) J Mater Sci Technol 31(2):164

    Article  CAS  Google Scholar 

  46. Huang L, Mu B, Yi X, Li S, Wang Q (2016) J Polym Environ. doi:10.1007/s10924-016-0917-x.

    Google Scholar 

  47. Tserki V, Zafeiropoulos NE, Simon F, Panayiotou C (2005) Compos Part A 36(8):1110

    Article  Google Scholar 

  48. Halal SLME, Colussi R, Deon GV, Pinto VZ, Villanova FA, Carreño NLV, Dias ARG, Zavareze ER (2015) Carbohydr Polym 133:644

    Article  Google Scholar 

  49. Mutje P, Lopez A, Vallejos ME, Lopez J, Vilaseca F (2007) Compos Part A 38:369

    Article  Google Scholar 

  50. Salehudina MH, Salleh E, Mamat SNH, Muhamad II (2014) Procedia Chem 9:23

    Article  Google Scholar 

  51. Montaño-Leyva B, Silva GGD, Gastaldi E, Torres-Chávez P, Gontard N, Angellier-Couss H (2013) Ind Crops Prod 43:545

    Article  Google Scholar 

  52. Santos T M, Souza Filho MDSM, Caceres CA, Rosa MF, Morais JPS, Pinto AMB, Azeredo HMC (2014) Food Hydrocolloids 41:113

    Article  CAS  Google Scholar 

  53. Kunanopparat T, Menut P, Morel M-H, Guilbert S (2008) Compos Part A 39:777

    Article  Google Scholar 

  54. Berthet M-A, Angellier-Coussy H, Guillard V, Gontard N (2015) J Appl Polym Sci. doi:10.1002/app.42528

    Google Scholar 

  55. Famá L, Gerschenson L, Goyanes S (2009) Carbohydr Polym 75:230

    Article  Google Scholar 

  56. Babaee M, Jonoobi M, Hamzeh Y, Ashori A (2015) Carbohydr Polym 132:1

    Article  CAS  Google Scholar 

  57. Shankar S, Reddy JP, Rhim JW (2015) Int J Biol Macromol 81:267

    Article  CAS  Google Scholar 

  58. Guo J, Ge L, Li X, Ma C, Li D (2014) Food Hydrocolloids 39:243

    Article  CAS  Google Scholar 

  59. Mu C, Guo J, Li X, Lin W, Li D (2012) Food Hydrocolloids 27:22

    Article  CAS  Google Scholar 

  60. Ibrahima H, Farag M, Megahed H, Mehanny S (2014) Carbohydr Polym 101:11

    Article  Google Scholar 

  61. Zainuddin SYZ, Ahmad I, Kargarzadeh H, Abdullah I, Dufresn A (2013) Carbohydr Polym 92:2299

    Article  CAS  Google Scholar 

  62. Wang XY, Su JF (2014) Mater Sci Technol 30:534

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the budget revenue of Prince of Songkla University, Contract Number SCI590389S. We also acknowledge Mr. Thomas Coyne for his kind assistance in editing the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Watchanida Chinpa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lehman, N., Phengthai, R. & Chinpa, W. Effect of Moringa oleifera Pod Husk Fibers on the Properties of Gelatin-Based Biocomposite. J Polym Environ 26, 1405–1414 (2018). https://doi.org/10.1007/s10924-017-1042-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1042-1

Keywords

Navigation