Environmental Impact Assessment of Polylactide(PLA)/Chicken Feathers Biocomposite Materials

  • Gemma Molins
  • María Dolores Álvarez
  • Núria Garrido
  • Jorge Macanás
  • Fernando Carrillo
Original Paper
  • 97 Downloads

Abstract

The aim of this study is to analyse the environmental impacts (EIs) of the process of preparation of new biocomposite materials obtained from polylactide (PLA) and chicken feathers (CFs). Two CFs stabilization methods and different percentages of CFs have been studied. The EIs of these new composites were compared to the impact of virgin PLA. Cradle-to-gate life cycle inventories were assessed for 0–35% v/v of CFs in a CFs/PLA biocomposite. Two CFs stabilization processes, autoclave and surfactant, were tested and compared with the aim to prioritize one of them from the environmental point of view. A composite plate of 184 × 184 × 2.2 mm3 was defined as the functional unit. Autoclave stabilization process exhibited lower environmental impact compared with surfactant stabilization process mainly due to both the lower requirements of electricity and water and the reduced pollution loads of the generated wastewater. Thus, the autoclave process was selected as the standard method when comparing the EIs of the proposed CFs/PLA biocomposites. In this sense, the addition of CFs to PLA matrix proportionally reduces all the EIs compared to pure PLA due to the replacement of PLA with CFs. This behaviour can be explained because the PLA production accounts for the 99% of the impact of the biocomposite. Consequently, CFs conveniently stabilized might be an alternative raw material to prepare CFs/PLA biocomposites with less environmental impact compared to pure PLA.

Keywords

Chicken feathers Biocomposites Green composites Waste recovering Life cycle assessment (LCA) Polylactide (PLA) 

Notes

Acknowledgements

FEDER and the Spanish Ministry of Science and Innovation funding (MAT 2010–17057) are gratefully acknowledged.

References

  1. 1.
    Joshi S, Drzal L, Mohanty A, Arora S (2004) Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos Part A Appl Sci Manuf 35:371–376CrossRefGoogle Scholar
  2. 2.
    Corbiere-Nicollier T, Gfeller-Laban B, Lundquist L, et al. (2001) Life cycle assessment of biofibres replacing glass fibres as reinforcement in plastics. Resour Conserv Recycl 33:267–287CrossRefGoogle Scholar
  3. 3.
    Wotzel K, Wirth R, Flake M (1999) Life cycle studies on hemp fibre reinforced components and ABS for automotive parts. Die Angew Makromol Chem 272:121–127CrossRefGoogle Scholar
  4. 4.
    Xu X, Jayaraman K, Morin C, Pecqueux N (2008) Life cycle assessment of wood-fibre-reinforced polypropylene composites. J Mater Process Technol 198:168–177CrossRefGoogle Scholar
  5. 5.
    Álvarez-Chávez CR, Edwards S, Moure-Eraso R, Geiser K (2012) Sustainability of bio-based plastics: general comparative analysis and recommendations for improvement. J Clean Prod 23:47–56CrossRefGoogle Scholar
  6. 6.
    Baillie C (2004) Green Composites, Polymer composites and the environment. Woodhead Publishing Ltd, CambridgeGoogle Scholar
  7. 7.
    Barone J, Schmidt W (2006) Composites and films comprised of avian feather keratin. 10/805,558Google Scholar
  8. 8.
    Wool R, Hong C (2005) Development of a bio-based composite material from soybean oil and keratin fibers. J Appl Polym Sci 95:1524CrossRefGoogle Scholar
  9. 9.
    Barone J, Schmidt W (2005) Polyethylene reinforced with keratin fibers obtained from chicken feathers. Compos Sci Technol 65:173–181CrossRefGoogle Scholar
  10. 10.
    Cheung HY, Ho MP, Lau KT et al. (2009) Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Compos Part B Eng 40:655–663CrossRefGoogle Scholar
  11. 11.
    Huda S, Yang Y (2009) Feather fiber reinforced light-weight composites with good acoustic properties. J Polym Environ 17:131–142CrossRefGoogle Scholar
  12. 12.
    Wallenberger F, Weston N (2004) Natural fibers, plastics and composites. Kluwer Academic Publishers, BostonCrossRefGoogle Scholar
  13. 13.
    Garraín D, Vidal R, Franco V (2007) Land use in LCA of biomaterials. In: 3rd International Conference Life Cycle Management, LCM 2007Google Scholar
  14. 14.
    Reddy N (2007) Structure and properties of chicken feather barbs as natural protein fibers. J Polym Environ 15:81–87CrossRefGoogle Scholar
  15. 15.
    AVEC (2015) Annual report of the Assiciation of Poultry Processors and Poultry Trade in the EU countries. BrusselsGoogle Scholar
  16. 16.
    Carrillo F, Macanás J, Colom X, et al. (2012) Use of chicken feathers waste for the fabrication of composite materials. In: 15th European conference on composite materials, Venice, pp. 1–8.0026Google Scholar
  17. 17.
    Instituto Markin (2009) Estudio sobre los subproductos generados en los mataderos de pollos. Año 2009, ValenciaGoogle Scholar
  18. 18.
    Garraín D, Vidal R, Martínez P, et al. (2007) How green are biopolymers? In: 16th International Conference on Engineering Design ICED’07Google Scholar
  19. 19.
    Cañavate J, Aymerich J, Garrido N, et al. (2016) Properties and optimal manufacturing conditions of chicken feathers/PLA biocomposites. J Compos Mater 50: 1671–1683Google Scholar
  20. 20.
    Granta Design Limited (2012) CES EduPack softwareGoogle Scholar
  21. 21.
    Kock J (2006) Physical and mechanical properties of chicken feather materials. Ph.D thesis, Georgia Institute of TechnologyGoogle Scholar
  22. 22.
    Wrzesniewska-Tosik K, Wawro D, Ratajska M, Steplewski W (2007) Novel biocomposites with feather keratin. Fibres Text East Eur 15:157Google Scholar
  23. 23.
    Cheng S, Lau K, Liu T, et al. (2009) Mechanical and thermal properties of chicken feather fiber/PLA green composites. Compos Part B Eng 40:650–654CrossRefGoogle Scholar
  24. 24.
    Carrillo F, Rahhali A, Canavate J, Colom X (2013) Biocomposites using waste whole chicken feathers and thermoplastic matrices. J Reinf Plast Compos 32:1419–1429CrossRefGoogle Scholar
  25. 25.
    Colom X, Rahalli A, Cañavate J, Carrillo F (2013) Properties and optimal manufacturingconditions of chicken feathers thermoplastic biocomposites. J Compos Mater 49: 295–308Google Scholar
  26. 26.
    Vink ETH, Glassner DA, Kolstad JJ, et al. (2007) ORIGINAL RESEARCH: The eco-profiles for current and near-future NatureWorks® polylactide (PLA) production. Ind Biotechnol 3:58–81CrossRefGoogle Scholar
  27. 27.
    Madival S (2009) Assessment of the environmental profile of PLA, PET and PS clamshell containers using LCA methodology. J Clean Prod 17:1183–1194CrossRefGoogle Scholar
  28. 28.
    Shen L, Worrell E, Patel M (2010) Present and future development in plastics from biomass. Biofuels Bioprod Biorefining 4:25–40CrossRefGoogle Scholar
  29. 29.
    Martínez-Hernández AL, Velasco-Santos C (2012) Keratin fibers from chicken feathers: structure and advances in polymer composites. In: Dullaart R et al (eds) Keratin Struct. Prop. Appl, Nova Science Publishers, Inc., pp 149–211Google Scholar
  30. 30.
    Garrido N, Aymerich J, Colom X et al (2011) Optimal manufacturing conditions of chicken feathers/PLA biocomposites. In: 12th Mediterranean congress of chemical engineering. p.21_045_PGoogle Scholar
  31. 31.
    Macanás J, Molins G, Álvarez MD, et al. (2011) Physicochemical characterization of a valorisable waste: chicken feathers. In: 12th Mediterranean congress, p.21_025_PGoogle Scholar
  32. 32.
    Weidema BP, Bauer C, Hischier R, et al. (2013) Data quality guidelines for the ecoinvent database version 3: Overview and methodology (final)Google Scholar
  33. 33.
    Eugene W. Rice, Rodger B. Baird, Andrew D. Eaton LSC (2012) Standard Methods for the Examination of Water and Wastewater. Am Water Work Assoc Public Work Assoc Environ Fed 1469Google Scholar
  34. 34.
    González-García S, Gomez-Fernández Z, Dias AC et al (2014) Life Cycle Assessment of broiler chicken production: a Portuguese case study. J Clean Prod 74:125–134CrossRefGoogle Scholar
  35. 35.
    PRé Consultants (2014) SimaPro 8.0 Life Cycle Assessment Software PackageGoogle Scholar
  36. 36.
    European Comission, Joint Research Centre, Institute for Environment and Sustainability (2010) International reference Life Cycle Data System (ILCD) Handbook—General quide for Life Cycle Assessment—Detailed quidance, FirstGoogle Scholar
  37. 37.
    Ministrerio de Agricultura P, y A (2007) Libro blanco subproductos de origen animal no destinados al consumo humano. Ministrerio de Agricultura, Pesca y Alimentación. MadridGoogle Scholar
  38. 38.
    Organisation IS (2006) ISO 14040:2006 Environmental managenet—Life cycle assessment—Principles and framework. Norma ISOGoogle Scholar
  39. 39.
    Vidal R (2009) Life cycle assessment of composite materials made of recycled thermoplastics combined with rice husks and cotton linters. Int J life cycle Assess 14:73–82CrossRefGoogle Scholar
  40. 40.
    Heijungs R, Huppes G, Guinee J (2010) Life cycle assessment and sustainability analysis of products, materials and technologies. Toward a scientific framework for sustainability life cycle analysis. Polym Degrad Stab 95:422–428CrossRefGoogle Scholar
  41. 41.
    Goedkoop M, Heijungs R, Huijbregts MAJ et al (2013) ReCiPe 200 8 A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. The NetherlandsGoogle Scholar
  42. 42.
    Le Duigou A (2012) PLLA/flax mat/balsa bio-sandwich-environmental impact and simplified life cycle analysis. Appl Compos Mater 19:363–378CrossRefGoogle Scholar
  43. 43.
    Prudêncio da Silva V, van der Werf HMG, Soares SR, Corson MS (2014) Environmental impacts of French and Brazilian broiler chicken production scenarios: an LCA approach. J Environ Manag 133:222–231CrossRefGoogle Scholar

Copyright information

© European Union 2017

Authors and Affiliations

  1. 1.Departament d’Enginyeria Química (EQ)Universitat Politècnica de Catalunya (UPC)TerrassaSpain
  2. 2.Departartament de Màquines i Motors Tèrmics (MMT)Universitat Politècnica de Catalunya (UPC)TerrassaSpain
  3. 3.Institut d’Investigació Tèxtil i Cooperació Industrial de Terrassa (INTEXTER)Universitat Politècnica de Catalunya (UPC)TerrassaSpain

Personalised recommendations