Journal of Polymers and the Environment

, Volume 25, Issue 1, pp 74–80 | Cite as

Stiff Biodegradable Polylactide Composites with Ultrafine Cellulose Filler

  • Michal Cichorek
  • Ewa Piorkowska
  • Nelli Krasnikova
Original Paper


Polylactide (PLA) composites with 10–30 wt% of commercial fine grain filler of native cellulose were prepared by melt-mixing, and examined. The composite films had esthetic appearance, glossy surface, creamy color and density close to that of neat PLA. Good dispersion of the filler in PLA matrix was achieved. The composites were stiffer than neat PLA; in the glassy region the storage modulus increased by approx. 30 %. The tensile strength of the composite materials in the temperature range from 25 to 45 °C was similar to that of neat PLA. No marked decrease in molar mass of PLA in the composites occurred during processing in comparison to neat PLA. Moreover, thermogravimetry experiments demonstrated good thermal stability of the composites; 5 % weight loss occurred well above 300 °C.


Polylactide Native cellulose Composites Mechanical properties Thermal properties 



This research project has been supported by the European Union European Regional Development Fund, Contract No. POIG.01.01.02-10-123/09. J.Rettenmaier&Söhne is gratefully acknowledged for providing Arbocel UFC100.


  1. 1.
    Liu H, Zhang J (2011) J Polym Sci Part B Polym Phys 49:1051CrossRefGoogle Scholar
  2. 2.
    Noda I, Satkowski MM, Dowrey AE, Marcott C (2004) Macromol Biosci 4:269CrossRefGoogle Scholar
  3. 3.
    Jiang L, Wolcott MP, Zhang J (2006) Biomacromolecules 7:199CrossRefGoogle Scholar
  4. 4.
    Kowalczyk M, Piorkowska E (2012) J Appl Polym Sci 124:4579Google Scholar
  5. 5.
    Oyama HT (2009) Polymer 50:747CrossRefGoogle Scholar
  6. 6.
    Hashima K, Nishitsuji S, Inoue T (2010) Polymer 51:3934CrossRefGoogle Scholar
  7. 7.
    Li Y, Shimizu H (2009) Eur Polym J 45:738CrossRefGoogle Scholar
  8. 8.
    Zubrowska A, Piorkowska E, Kowalewska A, Cichorek M (2015) Coll Polym Sci 293:23CrossRefGoogle Scholar
  9. 9.
    Pluta M, Piorkowska E (2015) Polym Test 46:79CrossRefGoogle Scholar
  10. 10.
    Hassouna F, Raquez JM, Addiego F, Toniazzo V, Dubois P, Ruch D (2012) Eur Polym J 48:404CrossRefGoogle Scholar
  11. 11.
    Jiang L, Zhang J, Wolcott MP (2007) Polymer 48:7632CrossRefGoogle Scholar
  12. 12.
    Pluta M (2006) J Polym Sci Part B: Polym Phys 44:3392CrossRefGoogle Scholar
  13. 13.
    Picard E, Ecpuche E, Fulchiron R (2011) Appl Clay Sci 53:58CrossRefGoogle Scholar
  14. 14.
    Piekarska K, Sowinski P, Piorkowska E, Haque MMU, Pracella M (2016) Compos Part A 82:34CrossRefGoogle Scholar
  15. 15.
    Wu D, Wu L, Zhang M, Zhao Y (2008) Polym Degrad Stab 93:1577CrossRefGoogle Scholar
  16. 16.
    Wu ChS, Liao HT (2007) Polymer 48:4449CrossRefGoogle Scholar
  17. 17.
    Mathew AP, Oksman K, Sain M (2005) J Appl Polym Sci 97:2014CrossRefGoogle Scholar
  18. 18.
    Petersson L, Kvien I, Oksman K (2007) Compos Sci Technol 67:2535CrossRefGoogle Scholar
  19. 19.
    Bogren KM, Gamstedt EK, Neagu RC, Akerholm M, Lindstrom M (2006) J Thermoplast Compos Mater 19:613CrossRefGoogle Scholar
  20. 20.
    Zini E, Baiardo M, Armelao L, Scandola M (2004) Macromol Biosci 4:286CrossRefGoogle Scholar
  21. 21.
    Oksman K, Skrifvars M, Selin JF (2003) Compos Sci Technol 63:1317CrossRefGoogle Scholar
  22. 22.
    Masirek R, Kulinski Z, Chionna D, Piorkowska E, Pracella M (2007) J Appl Polym Sci 105:255CrossRefGoogle Scholar
  23. 23.
    Piekarska K, Piorkowska E, Krasnikova N, Kulpinski P (2014) Polym Compos 35:747CrossRefGoogle Scholar
  24. 24.
    Fujisawa S, Saito T, Kimura S, Iwata T, Isogai A (2013) Biomacromolecules 14:1541CrossRefGoogle Scholar
  25. 25.
    Courgneau C, Rusu D, Henneuse C, Ducruet V, Lacrampe MF, Krawczak P (2013) Express Polym Lett 7:787CrossRefGoogle Scholar
  26. 26.
    Pan P, Zhu B, Kai W, Serizawa S, Iji M, Inoue Y (2007) J Appl Polym Sci 105:1511CrossRefGoogle Scholar
  27. 27.
    Lee SH, Wang S (2006) Compos Part A 37:80CrossRefGoogle Scholar
  28. 28.
    Kowalczyk M, Piorkowska E, Pracella M, Kulpinski P (2011) Compos Part A 42:1509CrossRefGoogle Scholar
  29. 29.
    Graupner N, Herrmann AS, Mussig J (2009) Compos Part A 40:810CrossRefGoogle Scholar
  30. 30.
    Faruk O, Bledzki AK, Fink HP, Sain M (2014) Macromol Mater Eng 299:9CrossRefGoogle Scholar
  31. 31.
    Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ et al (2010) J Mater Sci 45:1CrossRefGoogle Scholar
  32. 32.
    Nyambo C, Mohanty AK, Misra M (2010) Biomacromolecules 11:1654CrossRefGoogle Scholar
  33. 33.
    Lezak E, Kulinski Z, Piorkowska E, Pracella M, Gadzinowska K (2008) Macromol Biosci 8:1190CrossRefGoogle Scholar
  34. 34.
    Mohamed AA, Finkenstadt VL, Palmquist DE (2008) J Appl Polym Sci 107:898CrossRefGoogle Scholar
  35. 35.
    Isogai A, Usuda M, Kato T, Uryu T, Atalla RH (1989) Macromolecules 22:3168CrossRefGoogle Scholar
  36. 36.
    Isogai A (1994) Allomorphs of cellulose and other polysaccharides. In: Gilbert RD (ed) Cellulosic polymers, blends and composites. Hanser Gardner Publications, Cincinnati, pp 5–23Google Scholar
  37. 37.
    Piorkowska E (2013) Crystallization in polymer composites and nanocomposites. In: Piorkowska E, Rutledge GC (eds) Handbook of polymer crystallization. Wiley, Hoboken, pp 379–397CrossRefGoogle Scholar
  38. 38.
    Piorkowska E (2001) Macromol Symp 169:143CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Michal Cichorek
    • 1
  • Ewa Piorkowska
    • 1
  • Nelli Krasnikova
    • 1
    • 2
  1. 1.Centre of Molecular and Macromolecular StudiesPolish Academy of SciencesLodzPoland
  2. 2.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations