Journal of Polymers and the Environment

, Volume 24, Issue 3, pp 206–220 | Cite as

Preparation, Characterization, and Rapid Adsorption of Hg2+ on Nanoscale Aramid-based Adsorbent

  • Changzhou Xu
  • Rongjun Qu
  • Shasha Li
  • Changmei Sun
  • Ying Zhang
  • Jingjing Gao
  • Yuzhong Niu
  • Qianli Ma
  • Xiquan Song
  • Shuangcheng Wang
  • Chunxia Li
Original Paper


A series of nanaoscale aramid-based adsorbents were prepared by the functionalization of poly (p-phenylene terephthalamide) (PPTA) with different content of ethylenediamine (EDA). Their structures were characterized by field emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and elemental analysis. Metal ions, including Hg2+, Pb2+, Ag+, Cu2+, Cd2+, and Ni2+ were chosen as the models to explore the binding behaviors of PPTA–ECH–EDA in aqueous medium. Results showed that PPTA–ECH–EDA exhibited higher adsorption capacity for Hg2+ due to their nanoscale structures. In particular, the adsorption rate was so high that equilibrium was achieved within 15 min for Hg2+. The adsorption of Hg2+ on PPTA–ECH–EDA followed the pseudo second-order model well. Langmuir and Freundlich models were employed to fit the isothermal adsorption, and the results revealed that Freundlich isotherm was a better model to predict the experimental data. The adsorption mechanism was revealed by X-ray photoelectron spectroscopy. It is preconceived that PPTA–ECH–EDA could be used as an effective adsorbent for fast removal of heavy ions from wastewater.


Preparation Poly (p-phenylene terephthalamide) Adsorption Hg2+ 



The authors are grateful for the financial support by the National Natural Science Foundation of China (Grant Nos. 51373074, 51073075, 51302127, 51143006).


  1. 1.
    Qu RJ, Sun XY, Sun CM, Zhang Y, Wang CH, Ji CN, Chen H (2012) Chem Eng J 182:458CrossRefGoogle Scholar
  2. 2.
    Xi M, Li YL, Shang SY, Li DH, Yin YX, Dai XY (2008) Surf Coat Technol 202:6029CrossRefGoogle Scholar
  3. 3.
    Hanv WH, Zhao TY, Wang XG (2015) Polymer 57:150CrossRefGoogle Scholar
  4. 4.
    Park JM, Kim DS, Kim SR (2003) J Colloid Interface Sci 264:431CrossRefGoogle Scholar
  5. 5.
    Every HA, Janssen GJM, Sitters EF, Mendes E, Picken SJ (2006) Power Sources 162:380CrossRefGoogle Scholar
  6. 6.
    Muniz AC, Paredes JL, Alonso AM, Tascon JMD (2010) Polym Degrad Stab 95:702CrossRefGoogle Scholar
  7. 7.
    Takayanagi M, Katayose T (1981) J Poly Sci Part A Polym Chem 19:1133CrossRefGoogle Scholar
  8. 8.
    Wang C, Xiao CF, Huang QL (2015) J Membr Technol 474:132CrossRefGoogle Scholar
  9. 9.
    Biggs BS, Frosch CJ, Erickson RH (1946) Ind Eng Chem 38:1016CrossRefGoogle Scholar
  10. 10.
    Takayanagiv M, Goto K (1984) J Appl Polym Sci 29:2547CrossRefGoogle Scholar
  11. 11.
    Takayanagi M, Goto K (1985) Polym Bull 13:35CrossRefGoogle Scholar
  12. 12.
    Burch RR, Sweeny W, Schmidt HW, Kim YH (1990) Macromolecules 23:1065CrossRefGoogle Scholar
  13. 13.
    O’Connor I, Hayden H, O’Connor S, Coleman JN, Gun’Ko YK (2009) J Phys Chem C 113:20184CrossRefGoogle Scholar
  14. 14.
    Wang Y, Shi ZX, Yin J (2011) Polymer 52:3661CrossRefGoogle Scholar
  15. 15.
    Fan J, Wang J, Shi ZX, Yu S, Yin J (2013) Mater Chem Phys 141:861CrossRefGoogle Scholar
  16. 16.
    Qu RJ, Sun XY, Sun CM, Ji CN, Wang CH (2012) Polym Adv Technol 23:21CrossRefGoogle Scholar
  17. 17.
    Suharso B (2010) Desalination 263:64CrossRefGoogle Scholar
  18. 18.
    Naiya TK, Bhattacharya AK, Das SK (2009) J Hazard Mater 170:252CrossRefGoogle Scholar
  19. 19.
    Tsou L, Sauer JA, Hara M (2000) Polymer 35:8103CrossRefGoogle Scholar
  20. 20.
    Cai RQ, Peng T, Wang FD (2011) Appl Surf Sci 257:9562CrossRefGoogle Scholar
  21. 21.
    Zhang Y, Qu RJ, Sun CM, Chen H (2009) J Hazard Mater 163:127CrossRefGoogle Scholar
  22. 22.
    Ho YS, Mckay G (1999) Process Biochem 34:451CrossRefGoogle Scholar
  23. 23.
    Wu Z, Joo H, Lee K (2005) Chem Eng J 112:227CrossRefGoogle Scholar
  24. 24.
    Wang SB, Li HT (2005) J Hazard Mater B126:71CrossRefGoogle Scholar
  25. 25.
    Ho YS (2006) Water Res 40:119CrossRefGoogle Scholar
  26. 26.
    Ramesh A, Hasegawa H, Sugimoto W, Maki T (2008) Bioresour Technol 99:3801CrossRefGoogle Scholar
  27. 27.
    Zhou ML, Martin G, Taha S (1996) Water Res 32:1109CrossRefGoogle Scholar
  28. 28.
    Ji CN, Song SH, Wang CR (2010) Chem Eng J 165:573CrossRefGoogle Scholar
  29. 29.
    Qu RJ, Zhang Y, Sun CM, Wang CH, Ji CN (2010) Chem Eng Data 55:1496CrossRefGoogle Scholar
  30. 30.
    Ma F, Qu RJ, Sun CM, Wang CH, Ji CN (2009) J Hazard Mater 172:792CrossRefGoogle Scholar
  31. 31.
    Volesky B, Holan ZR (1995) Biotechnol Prog 11:235CrossRefGoogle Scholar
  32. 32.
    Ahmed MH, Byrne JA, Mclaughlin JAD (2013) Appl Surf Sci 273:507CrossRefGoogle Scholar
  33. 33.
    Majumder S, Priyadarshini M, Subudhi U, Chainy GBN, Varma S (2009) Appl Surf Sci 256:438CrossRefGoogle Scholar
  34. 34.
    Sun CM, Qu RJ, Ji CN, Wang Q, Wang CH (2006) Eur Polym J 42:188CrossRefGoogle Scholar
  35. 35.
    Lim SF, Zheng YM, Zou SW, Chen JP (2008) Environ Sci Techno 42:2551CrossRefGoogle Scholar
  36. 36.
    Gupta VK, Singh P, Rahman N (2004) J Colloid Interface Sci 2:398CrossRefGoogle Scholar
  37. 37.
    Anirudhan TS, Jalajamony S, Sreekumari SS (2012) J Appl Clay Sci 65–66:67CrossRefGoogle Scholar
  38. 38.
    Liu Y, Sun XM, Li BH (2010) Carbohydr Polym 81:335CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Changzhou Xu
    • 1
  • Rongjun Qu
    • 1
  • Shasha Li
    • 1
  • Changmei Sun
    • 1
  • Ying Zhang
    • 1
  • Jingjing Gao
    • 1
  • Yuzhong Niu
    • 1
  • Qianli Ma
    • 2
  • Xiquan Song
    • 2
  • Shuangcheng Wang
    • 2
  • Chunxia Li
    • 2
  1. 1.School of Chemistry and Materials ScienceLudong UniversityYantaiChina
  2. 2.Yantai Tayho Advanced Materials Co. LtdYantaiChina

Personalised recommendations