Skip to main content
Log in

Preparation, Characterization, and Rapid Adsorption of Hg2+ on Nanoscale Aramid-based Adsorbent

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

A series of nanaoscale aramid-based adsorbents were prepared by the functionalization of poly (p-phenylene terephthalamide) (PPTA) with different content of ethylenediamine (EDA). Their structures were characterized by field emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and elemental analysis. Metal ions, including Hg2+, Pb2+, Ag+, Cu2+, Cd2+, and Ni2+ were chosen as the models to explore the binding behaviors of PPTA–ECH–EDA in aqueous medium. Results showed that PPTA–ECH–EDA exhibited higher adsorption capacity for Hg2+ due to their nanoscale structures. In particular, the adsorption rate was so high that equilibrium was achieved within 15 min for Hg2+. The adsorption of Hg2+ on PPTA–ECH–EDA followed the pseudo second-order model well. Langmuir and Freundlich models were employed to fit the isothermal adsorption, and the results revealed that Freundlich isotherm was a better model to predict the experimental data. The adsorption mechanism was revealed by X-ray photoelectron spectroscopy. It is preconceived that PPTA–ECH–EDA could be used as an effective adsorbent for fast removal of heavy ions from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Scheme 2

Similar content being viewed by others

References

  1. Qu RJ, Sun XY, Sun CM, Zhang Y, Wang CH, Ji CN, Chen H (2012) Chem Eng J 182:458

    Article  Google Scholar 

  2. Xi M, Li YL, Shang SY, Li DH, Yin YX, Dai XY (2008) Surf Coat Technol 202:6029

    Article  CAS  Google Scholar 

  3. Hanv WH, Zhao TY, Wang XG (2015) Polymer 57:150

    Article  Google Scholar 

  4. Park JM, Kim DS, Kim SR (2003) J Colloid Interface Sci 264:431

    Article  CAS  Google Scholar 

  5. Every HA, Janssen GJM, Sitters EF, Mendes E, Picken SJ (2006) Power Sources 162:380

    Article  CAS  Google Scholar 

  6. Muniz AC, Paredes JL, Alonso AM, Tascon JMD (2010) Polym Degrad Stab 95:702

    Article  Google Scholar 

  7. Takayanagi M, Katayose T (1981) J Poly Sci Part A Polym Chem 19:1133

    Article  CAS  Google Scholar 

  8. Wang C, Xiao CF, Huang QL (2015) J Membr Technol 474:132

    Article  CAS  Google Scholar 

  9. Biggs BS, Frosch CJ, Erickson RH (1946) Ind Eng Chem 38:1016

    Article  CAS  Google Scholar 

  10. Takayanagiv M, Goto K (1984) J Appl Polym Sci 29:2547

    Article  Google Scholar 

  11. Takayanagi M, Goto K (1985) Polym Bull 13:35

    Article  CAS  Google Scholar 

  12. Burch RR, Sweeny W, Schmidt HW, Kim YH (1990) Macromolecules 23:1065

    Article  CAS  Google Scholar 

  13. O’Connor I, Hayden H, O’Connor S, Coleman JN, Gun’Ko YK (2009) J Phys Chem C 113:20184

    Article  Google Scholar 

  14. Wang Y, Shi ZX, Yin J (2011) Polymer 52:3661

    Article  CAS  Google Scholar 

  15. Fan J, Wang J, Shi ZX, Yu S, Yin J (2013) Mater Chem Phys 141:861

    Article  CAS  Google Scholar 

  16. Qu RJ, Sun XY, Sun CM, Ji CN, Wang CH (2012) Polym Adv Technol 23:21

    Article  CAS  Google Scholar 

  17. Suharso B (2010) Desalination 263:64

    Article  CAS  Google Scholar 

  18. Naiya TK, Bhattacharya AK, Das SK (2009) J Hazard Mater 170:252

    Article  CAS  Google Scholar 

  19. Tsou L, Sauer JA, Hara M (2000) Polymer 35:8103

    Article  Google Scholar 

  20. Cai RQ, Peng T, Wang FD (2011) Appl Surf Sci 257:9562

    Article  CAS  Google Scholar 

  21. Zhang Y, Qu RJ, Sun CM, Chen H (2009) J Hazard Mater 163:127

    Article  CAS  Google Scholar 

  22. Ho YS, Mckay G (1999) Process Biochem 34:451

    Article  CAS  Google Scholar 

  23. Wu Z, Joo H, Lee K (2005) Chem Eng J 112:227

    Article  CAS  Google Scholar 

  24. Wang SB, Li HT (2005) J Hazard Mater B126:71

    Article  Google Scholar 

  25. Ho YS (2006) Water Res 40:119

    Article  CAS  Google Scholar 

  26. Ramesh A, Hasegawa H, Sugimoto W, Maki T (2008) Bioresour Technol 99:3801

    Article  CAS  Google Scholar 

  27. Zhou ML, Martin G, Taha S (1996) Water Res 32:1109

    Article  Google Scholar 

  28. Ji CN, Song SH, Wang CR (2010) Chem Eng J 165:573

    Article  CAS  Google Scholar 

  29. Qu RJ, Zhang Y, Sun CM, Wang CH, Ji CN (2010) Chem Eng Data 55:1496

    Article  CAS  Google Scholar 

  30. Ma F, Qu RJ, Sun CM, Wang CH, Ji CN (2009) J Hazard Mater 172:792

    Article  CAS  Google Scholar 

  31. Volesky B, Holan ZR (1995) Biotechnol Prog 11:235

    Article  CAS  Google Scholar 

  32. Ahmed MH, Byrne JA, Mclaughlin JAD (2013) Appl Surf Sci 273:507

    Article  CAS  Google Scholar 

  33. Majumder S, Priyadarshini M, Subudhi U, Chainy GBN, Varma S (2009) Appl Surf Sci 256:438

    Article  CAS  Google Scholar 

  34. Sun CM, Qu RJ, Ji CN, Wang Q, Wang CH (2006) Eur Polym J 42:188

    Article  CAS  Google Scholar 

  35. Lim SF, Zheng YM, Zou SW, Chen JP (2008) Environ Sci Techno 42:2551

    Article  CAS  Google Scholar 

  36. Gupta VK, Singh P, Rahman N (2004) J Colloid Interface Sci 2:398

    Article  Google Scholar 

  37. Anirudhan TS, Jalajamony S, Sreekumari SS (2012) J Appl Clay Sci 65–66:67

    Article  Google Scholar 

  38. Liu Y, Sun XM, Li BH (2010) Carbohydr Polym 81:335

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support by the National Natural Science Foundation of China (Grant Nos. 51373074, 51073075, 51302127, 51143006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rongjun Qu or Qianli Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Qu, R., Li, S. et al. Preparation, Characterization, and Rapid Adsorption of Hg2+ on Nanoscale Aramid-based Adsorbent. J Polym Environ 24, 206–220 (2016). https://doi.org/10.1007/s10924-016-0764-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-016-0764-9

Keywords

Navigation