Journal of Polymers and the Environment

, Volume 24, Issue 3, pp 185–195 | Cite as

Mechanical Recycling of PLA Filled with a High Level of Cellulose Fibres

  • Dan Åkesson
  • Thomas Vrignaud
  • Clément Tissot
  • Mikael Skrifvars
Original Paper


Composites consisting of 30 vol% PLA and 70 vol% cellulose fibres were prepared with compression moulding. In the first part of the study, the recyclability of this composite material was investigated by grinding the material and using the recyclate obtained as a filler for PLA. Thus, the recyclate was compounded with PLA in loadings ranging from 20 to 50 wt%. The composites obtained were characterised by tensile tests, Charpy impact tests, DMTA, and SEM. Tests showed that the recyclate had a relatively good reinforcing effect. Stress at break increased from about 50 to 77 MPa and the modulus increased from 3.6 to 8.5 GPa. In the second part of the study, the ability to mechanically recycle the composites obtained was evaluated by repeated processing. Composite with two loadings of the recyclate (20 wt% and 50 %) was injection moulded repeatedly, six times. Tests showed that the composite material with 20 wt% recyclate could withstand six cycles relatively well, while the composite with the higher load degraded much more quickly. For the composites with 50 wt% recyclate, signs of polymer degradation could be seen already after reprocessing the composite once.


Biocomposite Biopolymer Recycling Repeated processing Polylactic acid Ageing 



This study was funded by Mistra, the Swedish Foundation for Strategic Environmental Research. We thank Södra Skogsägarnas Ekonomisk Förening for supplying the PLA composite material.


  1. 1.
    Mathew AP, Oksman K, Sain M (2005) Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J Appl Polym Sci 97(5):2014–2025CrossRefGoogle Scholar
  2. 2.
    Csizmadia R, Faludi G, Renner K, Móczó J, Pukánszky B (2013) PLA/wood biocomposites: improving composite strength by chemical treatment of the fibers. Compos A Appl Sci Manuf 53:46–53CrossRefGoogle Scholar
  3. 3.
    Petinakis E, Yu L, Edward G, Dean K, Liu H, Scully A (2009) Effect of matrix-particle interfacial adhesion on the mechanical properties of poly(lactic acid)/wood-flour micro-composites. J Polym Environ 17(2):83–94CrossRefGoogle Scholar
  4. 4.
    Altun Y, Doğan M, Bayramlı E (2013) Effect of alkaline treatment and pre-impregnation on mechanical and water absorbtion properties of pine wood flour containing poly (lactic acid) based green-composites. J Polym Environ 21(3):850–856CrossRefGoogle Scholar
  5. 5.
    Yu T, Hu C, Chen X, Li Y (2015) Effect of diisocyanates as compatibilizer on the properties of ramie/poly(lactic acid) (PLA) composites. Compos A Appl Sci Manuf 76:20–27CrossRefGoogle Scholar
  6. 6.
    Yu T, Ren J, Li S, Yuan H, Li Y (2010) Effect of fiber surface-treatments on the properties of poly(lactic acid)/ramie composites. Compos A Appl Sci Manuf 41(4):499–505CrossRefGoogle Scholar
  7. 7.
    Islam MS, Pickering KL, Foreman NJ (2010) Influence of alkali treatment on the interfacial and physico-mechanical properties of industrial hemp fibre reinforced polylactic acid composites. Compos A Appl Sci Manuf 41(5):596–603CrossRefGoogle Scholar
  8. 8.
    Sawpan MA, Pickering KL, Fernyhough A (2011) Improvement of mechanical performance of industrial hemp fibre reinforced polylactide biocomposites. Compos A Appl Sci Manuf 42(3):310–319CrossRefGoogle Scholar
  9. 9.
    Bledzki AK, Jaszkiewicz A, Scherzer D (2009) Mechanical properties of PLA composites with man-made cellulose and abaca fibres. Compos A Appl Sci Manuf 40(4):404–412CrossRefGoogle Scholar
  10. 10.
    Bax B, Müssig J (2008) Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Compos Sci Technol 68(7–8):1601–1607CrossRefGoogle Scholar
  11. 11.
    Kartalis CN, Papaspyrides CD, Pfaendner R, Hoffmann K, Herbst H (1999) Mechanical recycling of postused high-density polyethylene crates using the restabilization technique. I. Influence of reprocessing. J Appl Polym Sci 73(9):1775–1785CrossRefGoogle Scholar
  12. 12.
    Loultcheva MK, Proietto M, Jilov N, La Mantia FP (1997) Recycling of high density polyethylene containers. Polym Degrad Stab 57(1):77–81CrossRefGoogle Scholar
  13. 13.
    da Costa HM, Ramos VD, de Oliveira MG (2007) Degradation of polypropylene (PP) during multiple extrusions: thermal analysis, mechanical properties and analysis of variance. Polym Test 26(5):676–684CrossRefGoogle Scholar
  14. 14.
    González-González VA, Neira-Velázquez G, Angulo-Sánchez JL (1998) Polypropylene chain scissions and molecular weight changes in multiple extrusion. Polym Degrad Stab 60(1):33–42CrossRefGoogle Scholar
  15. 15.
    Żenkiewicz M, Richert J, Rytlewski P, Moraczewski K, Stepczyńska M, Karasiewicz T (2009) Characterisation of multi-extruded poly(lactic acid). Polym Test 28(4):412–418CrossRefGoogle Scholar
  16. 16.
    Pillin I, Montrelay N, Bourmaud A, Grohens Y (2008) Effect of thermo-mechanical cycles on the physico-chemical properties of poly(lactic acid). Polym Degrad Stab 93(2):321–328CrossRefGoogle Scholar
  17. 17.
    Mohanty AK, Misra M, Drzal LT (eds) (2005) Natural fibers, biopolymers, and biocomposites. CRC Press Inc, pp 1–35Google Scholar
  18. 18.
    Beg MDH, Pickering KL (2008) Reprocessing of wood fibre reinforced polypropylene composites. Part I: effects on physical and mechanical properties. Compos Part A Appl Sci Manuf 39(7):1091–1100CrossRefGoogle Scholar
  19. 19.
    Beg MDH, Pickering KL (2008) Reprocessing of wood fibre reinforced polypropylene composites. Part II: hygrothermal ageing and its effects. Compos Part A Appl Sci Manuf 39(9):1565–1571CrossRefGoogle Scholar
  20. 20.
    Bourmaud ACBaley (2007) Investigations on the recycling of hemp and sisal fibre reinforced polypropylene composites. Polym Degrad Stab 92(6):1034–1045CrossRefGoogle Scholar
  21. 21.
    Soccalingame L, Bourmaud A, Perrin D, Bénézet JC, Bergeret A (2015) Reprocessing of wood flour reinforced polypropylene composites: impact of particle size and coupling agent on composite and particle properties. Polym Degrad Stab 113:72–85CrossRefGoogle Scholar
  22. 22.
    Le Duigou A, Pillin I, Bourmaud A, Davies P, Baley C (2008) Effect of recycling on mechanical behaviour of biocompostable flax/poly(l-lactide) composites. Compos A Appl Sci Manuf 39(9):1471–1478CrossRefGoogle Scholar
  23. 23.
    Huda MS, Drzal LT, Misra M, Mohanty AK, Williams K, Mielewski DF (2005) Study on biocomposites from recycled newspaper fiber and poly(lactic acid). Ind Eng Chem Res 44(15):5593–5601CrossRefGoogle Scholar
  24. 24.
    Du Y, Wu T, Yan N, Kortschot MT, Farnood R (2014) Fabrication and characterization of fully biodegradable natural fiber-reinforced poly(lactic acid) composites. Compos B Eng 56:717–723CrossRefGoogle Scholar
  25. 25.
    Courgneau C, Rusu D, Henneuse C, Ducruet V, Lacrampe M-F, Krawczak P (2013) Characterisation of low-odour emissive polylactide/cellulose fibre biocomposites for car interior. Express Polym Lett 7(9):787–804CrossRefGoogle Scholar
  26. 26.
    Etaati A, Pather S, Fang Z, Wang H (2014) The study of fibre/matrix bond strength in short hemp polypropylene composites from dynamic mechanical analysis. Compos B Eng 62:19–28CrossRefGoogle Scholar
  27. 27.
    Huda MS, Drzal LT, Misra M, Mohanty AK (2006) Wood-fiber-reinforced poly(lactic acid) composites: evaluation of the physicomechanical and morphological properties. J Appl Polym Sci 102(5):4856–4869CrossRefGoogle Scholar
  28. 28.
    Pothan LA, Oommen Z, Thomas S (2003) Dynamic mechanical analysis of banana fibre reinforced polyester composites. Compos Sci Technol 63(2):283–293CrossRefGoogle Scholar
  29. 29.
    Badia JD, Strömberg E, Karlsson S, Ribes-Greus A (2012) Material valorisation of amorphous polylactide. Influence of thermo-mechanical degradation on the morphology, segmental dynamics, thermal and mechanical performance. Polym Degrad Stab 97(4):670–678CrossRefGoogle Scholar
  30. 30.
    Bourissou D, Martin-Vaca B, Dumitrescu A, Graullier M, Lacombe F (2005) Controlled cationic polymerization of lactide. Macromolecules 38(24):9993–9998CrossRefGoogle Scholar
  31. 31.
    Jansson A, Möller K, Gevert T (2003) Degradation of post-consumer polypropylene materials exposed to simulated recycling—mechanical properties. Polym Degrad Stab 82(1):37–46CrossRefGoogle Scholar
  32. 32.
    Jansson A, Möller K, Hjertberg T (2004) Chemical degradation of a polypropylene material exposed to simulated recycling. Polym Degrad Stab 84(2):227–232CrossRefGoogle Scholar
  33. 33.
    Boldizar A, Jansson A, Gevert T, Möller K (2000) Simulated recycling of post-consumer high density polyethylene material. Polym Degrad Stab 68(3):317–319CrossRefGoogle Scholar
  34. 34.
    Islam MS, Pickering KL, Foreman NJ (2010) Influence of hygrothermal ageing on the physico-mechanical properties of alkali treated industrial hemp fibre reinforced polylactic acid composites. J Polym Environ 18(4):696–704CrossRefGoogle Scholar
  35. 35.
    Gil-Castell O, Badia JD, Kittikorn T, Strömberg E, Martínez-Felipe A, Ek M, Karlsson S, Ribes-Greus A (2014) Hydrothermal ageing of polylactide/sisal biocomposites. Studies of water absorption behaviour and physico-chemical performance. Polym Degrad Stab 108:212–222CrossRefGoogle Scholar
  36. 36.
    Hu R-H, Sun M-Y, Lim J-K (2010) Moisture absorption, tensile strength and microstructure evolution of short jute fiber/polylactide composite in hygrothermal environment. Mater Des 31(7):3167–3173CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Dan Åkesson
    • 1
  • Thomas Vrignaud
    • 1
  • Clément Tissot
    • 1
  • Mikael Skrifvars
    • 1
  1. 1.University of BoråsBoråsSweden

Personalised recommendations