Journal of Polymers and the Environment

, Volume 24, Issue 1, pp 72–83 | Cite as

Photochemical Degradation of Aqueous Polyvinyl Alcohol in a Continuous UV/H2O2 Process: Experimental and Statistical Analysis

  • Dina Hamad
  • Ramdhane Dhib
  • Mehrab Mehrvar
Original Paper


Polyvinyl alcohol (PVA), being a dominant contributor of total organic carbon (TOC) in textile wastewater, is not easily degradable by conventional methods of wastewater treatment. This study investigates the degradation of aqueous PVA in a continuous UV/H2O2 photoreactor since the feeding strategy of hydrogen peroxide proves to have considerable effects on the process performance. Response surface methodology involving the Box–Behnken method is adopted for the experimental design to study the effects of operating parameters on the process performance. Experimental analysis shows that the TOC removal varies from 16.11 to 42.70 % along with a reduction of the PVA molecular weights from 56.7 to 95.3 %. The TOC removal is significantly lower than the molecular weight reduction due to the generation of the intermediate products during oxidation. Operating the UV/H2O2 process in a continuous mode facilitates the degradation of highly concentrated polymeric solutions using a relatively small hydrogen peroxide concentration in the feed with a small residence time ranges from 6.13 to 18.4 min.


Polyvinyl alcohol degradation Molecular weight measurements TOC removal Continuous UV/H2O2 photoreactor RSM H2O2 feeding strategy 



Analysis of variance


Advanced oxidation process


Box–Behnken design


Statistical residual


Gel permeation chromatography


Probability value


Polyacrylic acid




Polyethylene glycol


Polyethylene oxide


Polyvinyl alcohol


Quadratic programming


Response surface methodology


Total organic carbon



List of symbols


PVA inlet concentration (mg/L)


Hydrogen peroxide inlet concentration (mg/L)


Feed flow rate (mL/min)


TOC removal (%)


PVA molecular weight (kg/mol)


Hydrogen peroxide residual (%)



The financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC) and Ryerson University is gratefully appreciated.


  1. 1.
    Ciner F, Akal Solmaz SK, Yonar T, Ustun GE (2003) Int J Environ Pollut 19:403–407CrossRefGoogle Scholar
  2. 2.
    Sun W, Tian J, Chen L, He S, Wang J (2012) Environ Sci Pollut Res 19:3178–3184CrossRefGoogle Scholar
  3. 3.
    Shonberger H, Baumann A, Keller W (1997) Am Dyest Rep 86(8):9–18Google Scholar
  4. 4.
    Zhang Y, Rong W, Fu Y, Ma X (2011) J Polym Environ 19:966–970CrossRefGoogle Scholar
  5. 5.
    Kaczmarek H, Kaminska A, Swiatek M, Rabek JF (1998) Appl Macromol Chem Phys 261(4622):109–121Google Scholar
  6. 6.
    Giroto J, Teixeira A, Nascimento C, Guardani R (2006) J Chem Eng Process Process Intensif 45(7):523–547CrossRefGoogle Scholar
  7. 7.
    Aarthi T, Shaama M, Madras G (2007) Ind Eng Chem Res 46(19):6204–6210CrossRefGoogle Scholar
  8. 8.
    Chen Y, Sun Z, Yang Y, Ke Q (2011) Photochem Photobiol 142(1):85–89CrossRefGoogle Scholar
  9. 9.
    Ghafoori G, Mehrvar M, Chan PK (2014) Chem Eng J 245:133–142CrossRefGoogle Scholar
  10. 10.
    Hamad D, Mehrvar M, Dhib R (2014) Polym Degrad Stab 103:75–82CrossRefGoogle Scholar
  11. 11.
    Xin D, Xu X, Wang H, Gao Y (2011) Int Symp Water Resour Environ Prot 2:1424–1427Google Scholar
  12. 12.
    Poyatos J, Munio M, Almecija M, Torres J, Hontario E, Osorio F (2010) Water Air Soil Pollut 205:187–204CrossRefGoogle Scholar
  13. 13.
    Getoff N (1996) Radiat Phys Chem 47:581–593CrossRefGoogle Scholar
  14. 14.
    Giroto J, Teixeira A, Nascimento C, Guardani R (2010) Ind Eng Chem Res 49(7):3200–3206CrossRefGoogle Scholar
  15. 15.
    Ghafoori G, Shah K, Mehrvar M, Chan P (2014) Can J Chem Eng 92(7):1163–1173CrossRefGoogle Scholar
  16. 16.
    Tabrizi G, Mehrvar M (2004) J Environ Sci Health A 39(11–12):3029–3081CrossRefGoogle Scholar
  17. 17.
    Mohajerani M, Mehrvar M, Ein-Mozaffari F (2009) Int J Eng 3:120–146Google Scholar
  18. 18.
    Zhang SJ, Yu HQ (2004) Water Res 38:309–316CrossRefGoogle Scholar
  19. 19.
    Bustillo-Lecompte C, Knight M, Mehrvar M (2015) Can J Chem Eng 93(5):798–807CrossRefGoogle Scholar
  20. 20.
    Baga AN, Aastair Johnson GR, Nazhat NB, Saadalla-Nazhat RA (1988) Anal Chim Acta 204:349–353CrossRefGoogle Scholar
  21. 21.
    Schulze-Hennings U, Pinnekamp J (2013) Water Sci Technol 67(9):2075–2082CrossRefGoogle Scholar
  22. 22.
    Nair A, Makwana A, Ahmed M (2014) Water Sci Technol 69(3):464–478CrossRefGoogle Scholar
  23. 23.
    Rezaee R, Maleki A, Jafari A, Mazloomi S, Zandsalimi Y, Mahvi A (2014) J Environ Health Sci Eng 12:67–75CrossRefGoogle Scholar
  24. 24.
    Mehrvar M, Anderson W, Moo-Young M (2001) Int J Photoenergy 3(4):187–191CrossRefGoogle Scholar
  25. 25.
    Hamad D, Mehrvar M, Dhib R (2015) Photochemical kinetic modeling of degradation of polyvinyl alcohol in UV/H2O2 reactor. In: 64th Canadian chemical engineering conference, Niagara Falls, Ontario, Canada, 19–22 October 2014Google Scholar
  26. 26.
    Hamad D (2015) Experimental investigation of polyvinyl alcohol degradation in UV/H2O2 photochemical reactors using different hydrogen peroxide feeding strategies. Ph.D. dissertation, Ryerson University, Toronto, OntarioGoogle Scholar
  27. 27.
    Buxton G, Greenstock C, Helman W, Ross A (1998) Phys Chem Ref Data 17:513–886CrossRefGoogle Scholar
  28. 28.
    Costa N, Lourenço J (2014) Chemometr Intell Lab 138:171–177CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Chemical EngineeringRyerson UniversityTorontoCanada

Personalised recommendations