Advertisement

Journal of Polymers and the Environment

, Volume 24, Issue 2, pp 98–103 | Cite as

Increased 3HV Concentration in the Bacterial Production of 3-Hydroxybutyrate (3HB) and 3-Hydroxyvalerate (3HV) Copolymer with Acid-Digested Rice Straw Waste

  • Junmo Ahn
  • Eun Hea Jho
  • Moonkyung Kim
  • Kyoungphile Nam
Original Paper

Abstract

Bacterial synthesis of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) copolymer [P(3HB-co-3HV)] using the hydrolysate of rice straw waste as a carbon source was affected by the composition of the hydrolysate, which depends highly on the rice straw pretreatment condition. Acid digestion with 2 % sulfuric acid generated larger production of P(3HB-co-3HV) than 6 % sulfuric acid, but 3HV concentration in the copolymer produced with 2 % acid hydrolysate was only 8.8 % compared to 18.1 % with 6 % acid hydrolysate. To obtain a higher 3HV mole fraction for enhanced flexibility of the copolymer, an additional heating was conducted with the 2 % acid hydrolysate after removal of residual rice straw. As the additional heating time increased a higher concentration of levulinic acid was generated, and consequently, the mole fraction of 3HV in P(3HB-co-3HV) increased. Among the conditions tested (i.e., 20-, 40-, 60-min), 60-min additional heating following 2 % sulfuric acid digestion achieved the highest 3HV mole fraction of 22.9 %. However, a longer heating time decreased the P(3HB-co-3HV) productivity, probably due to the increased intermediates concentrations acting as inhibitors in the hydrolysates. Therefore, the use of additional heating needs to consider both the increase in the 3HV mole fraction and the decrease in the P(3HB-co-3HV) productivity.

Keywords

Rice straw hydrolysate Polyhydroxyalkanoates Levulinic acid P(3HB-co-3HV) Cupriavidus necator 

Notes

Acknowledgments

This work is financially supported by Korea Ministry of Environment (MOE) as Waste to energy-recycling Human resource development Project. The authors also wish to thank Integrated Research Institute of Construction and Environmental Engineering at Seoul National University for technical assistance.

References

  1. 1.
    Chanprateep S (2010) J Biosci Bioeng 110:621–632CrossRefGoogle Scholar
  2. 2.
    Madkour MH, Heinrich D, Alghamdi MA, Shabbaj II, Steinbuchel A (2013) Biomacromolecules 14:2963–2972CrossRefGoogle Scholar
  3. 3.
    Davis R, Kataria R, Cerrone F, Woods T, Kenny S, O’Donovan A, Guzik M, Shaikh H, Duane G, Gupta VK, Tuohy MG, Padamatti RB, Casey E, O’Connor KE (2013) Bioresour Technol 150:202–209CrossRefGoogle Scholar
  4. 4.
    Park I, Jho EH, Nam K (2013) J Polym Environ 22:244–251CrossRefGoogle Scholar
  5. 5.
    Hiraishi A, Khan S (2003) Appl Microbiol Biotechnol 61:103–109CrossRefGoogle Scholar
  6. 6.
    Solaiman DK, Ashby RD, Foglia TA, Marmer WN (2006) Appl Microbiol Biotechnol 71:783–789CrossRefGoogle Scholar
  7. 7.
    Hu F, Ragauskas A (2012) Bioenergy Res 5:1043–1066CrossRefGoogle Scholar
  8. 8.
    Kim I, Han J-I (2012) Biomass Bioenergy 46:210–217CrossRefGoogle Scholar
  9. 9.
    Sindhu R, Silviya N, Binod P, Pandey A (2013) Biochem Eng J 78:67–72CrossRefGoogle Scholar
  10. 10.
    Alva Munoz LE, Riley MR (2008) Biotechnol Bioeng 100:882–888CrossRefGoogle Scholar
  11. 11.
    Huang TY, Duan KJ, Huang SY, Chen CW (2006) J Ind Microbiol Biotechnol 33:701–706CrossRefGoogle Scholar
  12. 12.
    Narayanan A, Kumar VS, Ramana KV (2014) Waste Biomass Valoriz 5:109–118CrossRefGoogle Scholar
  13. 13.
    Haas R, Jin B, Zepf FT (2008) Biosci Biotechnol Biochem 72:253–256CrossRefGoogle Scholar
  14. 14.
    Hsu T-C, Guo G-L, Chen W-H, Hwang W-S (2010) Bioresour Technol 101:4907–4913CrossRefGoogle Scholar
  15. 15.
    Cesario MT, Raposo RS, de Almeida MC, van Keulen F, Ferreira BS, da Fonseca MM (2014) New Biotechnol 31:104–113CrossRefGoogle Scholar
  16. 16.
    Chung SH, Choi GG, Kim HW, Rhee YH (2001) J Microbiol 39:79–82Google Scholar
  17. 17.
    Girisuta B, Janssen L, Heeres H (2006) Green Chem 8:701–709CrossRefGoogle Scholar
  18. 18.
    Rackemann DW, Doherty WO (2011) Biofuel Bioprod Biorefin 5:198–214CrossRefGoogle Scholar
  19. 19.
    Werker A, Lind P, Bengtsson S, Nordström F (2008) Water Res 42:2517–2526CrossRefGoogle Scholar
  20. 20.
    Miller GL, Blum R, Glennon WE, Burton AL (1960) Anal Chem 1:127–132Google Scholar
  21. 21.
    Yat SC, Berger A, Shonnard DR (2008) Bioresour Technol 99:3855–3863CrossRefGoogle Scholar
  22. 22.
    Obruca S, Benesova P, Petrik S, Oborna J, Prikryl R, Marova I (2014) Process Biochem 49:1409–1414CrossRefGoogle Scholar
  23. 23.
    Yu J, Stahl H (2008) Bioresour Technol 99:8042–8048CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Junmo Ahn
    • 1
  • Eun Hea Jho
    • 2
  • Moonkyung Kim
    • 1
  • Kyoungphile Nam
    • 1
  1. 1.Department of Civil and Environmental EngineeringSeoul National UniversitySeoulRepublic of Korea
  2. 2.Department of Environmental ScienceHankuk University of Foreign StudiesYongin-siRepublic of Korea

Personalised recommendations