Journal of Polymers and the Environment

, Volume 23, Issue 4, pp 588–594 | Cite as

Non-Toxic Crosslinking of Starch Using Polycarboxylic Acids: Kinetic Study and Quantitative Correlation of Mechanical Properties and Crosslinking Degrees

  • Li Shen
  • Helan Xu
  • Lingjuan Kong
  • Yiqi Yang
Original Paper


For the first time, kinetics of citric acid crosslinking of starch was studied, and mechanical properties of starch films were quantitatively correlated with crosslinked degrees and structures of polycarboxylic acids. To substitute toxic crosslinkers to improve the properties of bio-derived polymers, non-toxic polycarboxylic acids were widely used to improve the performance properties of starch-derived industrial products, and were proved effective. However, the mechanism of the reaction and relationship between crosslinking extents and performance properties of starch products had not been clarified. In this study, crosslinking of starch by polycarboxylic acids was verified, and logarithmic relationship between crosslinking degree and strength was elucidated. The polycarboxylic acids with more carboxyl groups could more effectively improve the tensile properties of starch films. In general, crosslinking using polycarboxylic acids might improve the mechanical properties of starch products in a controlled manner and thus could facilitate their industrialization.


Polycarboxylic acids Citric acid Kinetics Starch Crosslink 



This research was financially supported by the Key Scientific and Technological Projects of Science and Technology Commission of Shanghai Municipality (12JC1400300), U.S. Department of Agriculture-National Institute of Food and Agriculture (Multistate Research Project S-1054 (NEB 37-037), Hatch Act), Nebraska Corn Board, and the Agricultural Research Division at the University of Nebraska-Lincoln.


  1. 1.
    Mohammadi Nafchi A, Moradpour M, Saeidi M, Alias AK (2013) Starch-Stärke 65:61CrossRefGoogle Scholar
  2. 2.
    Tang X, Alavi S (2011) Carbohydr Polym 85:7CrossRefGoogle Scholar
  3. 3.
    El-Tahlawy K, Venditti RA, Pawlak JJ (2007) Carbohydr Polym 67:319CrossRefGoogle Scholar
  4. 4.
    Yin Y, Li J, Liu Y, Li Z (2005) J Appl Polym Sci 96:1394CrossRefGoogle Scholar
  5. 5.
    Li BZ, Wang LJ, Li D, Chiu YL, Zhang ZJ, Shi J, Chen XD, Mao ZH (2009) J Food Eng 92:255CrossRefGoogle Scholar
  6. 6.
    Seker M, Hanna MA (2006) Ind Crop Prod 23:249CrossRefGoogle Scholar
  7. 7.
    Valodkar M, Thakore S (2010) Carbohydr Res 345:2354CrossRefGoogle Scholar
  8. 8.
    Simi C, Abraham TE (2007) Bioprocess Biosyst Eng 30:173CrossRefGoogle Scholar
  9. 9.
    Delval F, Crini G, Bertini S, Filiatre C, Torri G (2005) Carbohydr Polym 60:67CrossRefGoogle Scholar
  10. 10.
    Ravenelle F, Marchessault R, Legare A, Buschmann M (2002) Carbohydr Polym 47:259CrossRefGoogle Scholar
  11. 11.
    Mottram DS, Wedzicha BL, Dodson AT (2002) Nature 419:448CrossRefGoogle Scholar
  12. 12.
    Ghosh Dastidar T, Netravali AN (2012) Carbohydr Polym 90:1620CrossRefGoogle Scholar
  13. 13.
    Le Blay G, Michel C, Blottiere H, Cherbut C (2003) J Appl Microbiol 94:312CrossRefGoogle Scholar
  14. 14.
    Seidel C, Kulicke WM, He C, Hartmann B, Lechner MD, Lazik W (2001) Starch-Stärke 53:305CrossRefGoogle Scholar
  15. 15.
    Yang CQ (1993) J Polym Sci A Polym Chem 31:1187CrossRefGoogle Scholar
  16. 16.
    Yang CQ, Wang D (2000) Text Res J 70:615CrossRefGoogle Scholar
  17. 17.
    Lam Y, Kan C, Yuen C (2011) Text Res J 81:482CrossRefGoogle Scholar
  18. 18.
    Soccol CR, Vandenberghe LP, Rodrigues C, Pandey A (2006) Food Technol Biotechnol 44:141Google Scholar
  19. 19.
    Cai S, Xu H, Jiang Q, Yang Y (2013) Langmuir 29:2311CrossRefGoogle Scholar
  20. 20.
    Xu H, Shen L, Xu L, Yang Y (2015) Biomed Microdevices 17:1CrossRefGoogle Scholar
  21. 21.
    Xu H, Liu P, Mi X, Xu L, Yang Y (2015) J Mater Chem B. doi: 10.1039/C4TB02100B Google Scholar
  22. 22.
    Yao W, Wang B, Ye T, Yang Y (2013) Ind Eng Chem Res 52:16118CrossRefGoogle Scholar
  23. 23.
    Ye T, Wang B, Liu J, Chen J, Yang Y (2015) Carbohydr Polym 121:92CrossRefGoogle Scholar
  24. 24.
    Ma X, Jian R, Chang PR, Yu J (2008) Biomacromolecules 9:3314CrossRefGoogle Scholar
  25. 25.
    Reddy N, Yang Y (2010) Food Chem 118:702CrossRefGoogle Scholar
  26. 26.
    Yu J, Wang N, Ma X (2005) Starch-Stärke 57:494CrossRefGoogle Scholar
  27. 27.
    Yoon SD, Chough SH, Park HR (2007) J Appl Polym Sci 106:2485CrossRefGoogle Scholar
  28. 28.
    Shi R, Zhang Z, Liu Q, Han Y, Zhang L, Chen D, Tian W (2007) Carbohydr Polym 69:748CrossRefGoogle Scholar
  29. 29.
    Yang CQ, Wang X (1996) Text Res J 66:595CrossRefGoogle Scholar
  30. 30.
    Yang CQ, Wang X, Kang IS (1997) Text Res J 67:334Google Scholar
  31. 31.
    Ho PC, Palmer DA, Wood RH (2000) J Phys Chem B 104:12084CrossRefGoogle Scholar
  32. 32.
    Demitri C, Del Sole R, Scalera F, Sannino A, Vasapollo G, Maffezzoli A, Ambrosio L, Nicolais L (2008) J Appl Polym Sci 110:2453CrossRefGoogle Scholar
  33. 33.
    Dong Q, Chen D (2004) Huaxue Shijie 12:006Google Scholar
  34. 34.
    Schramm C, Rinderer B, Bobleter O (1997) J Soc Dyers Colour 113:346CrossRefGoogle Scholar
  35. 35.
    Lund K, Brelid H (2013) Ind Eng Chem Res 52:11502CrossRefGoogle Scholar
  36. 36.
    Choi HM, Kim JH, Shin S (1999) J Appl Polym Sci 73:2691CrossRefGoogle Scholar
  37. 37.
    Šimkovic I, Hricovíni M, Mendichi R, van Soest JJG (2004) Carbohydr Polym 55:299CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and BiotechnologyDonghua UniversityShanghaiChina
  2. 2.Department of Textiles, Merchandising and Fashion DesignUniversity of Nebraska-LincolnLincolnUSA
  3. 3.Department of Biological Systems EngineeringUniversity of Nebraska-LincolnLincolnUSA
  4. 4.Nebraska Center for Materials and NanoscienceUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations