Journal of Polymers and the Environment

, Volume 23, Issue 4, pp 559–565 | Cite as

Bio-based Branched Polymer Bearing Castor Oil Core as a Nucleating Agent for Poly(l-Lactic Acid)

  • Takashi Tsujimoto
  • Shumpei Nishio
  • Hiroshi Uyama
Original Paper


In this study, a bio-based branched polymer bearing a castor oil core was synthesized, and the nucleating effect of the branched polymer on the crystallization of poly(l-lactic acid) (PLLA) was investigated by a differential scanning calorimetry and a polarized optical microscopy. The bio-based branched polymer was synthesized by ring-opening polymerization of l-lactide using castor oil core as an initiator, and subsequently modification of terminal groups was performed. A small amount of the trimellitoyl-terminated branched polymer accelerated the crystallization of PLLA, and the crystallization half time was dependent on the molecular weight of the branched polymer. By the addition of the branched polymer, the spherulite size of PLLA became much smaller than that of neat PLLA. Furthermore, the strain at break of PLLA containing the branched polymer was improved, compared with that of neat PLLA.


Bio-based polymer Poly(lactic acid) Branched polymer Nucleating agent 



This study was supported by a Grant-in-Aid for Young Scientists from Japan Society for the Promotion of Science (JSPS) (No. 268101140), and the New Energy and Industrial Technology Development Organization (NEDO) of Japan.


  1. 1.
    Mohanty AK, Misra M, Hinrichsen G (2000) Macromol Mater Eng 276(277):1–24CrossRefGoogle Scholar
  2. 2.
    Mecking S (2004) Angew Chem Int Ed 43:1078–1085CrossRefGoogle Scholar
  3. 3.
    Ikada Y, Tsuji H (2000) Macromol Rapid Commun 21:117–132CrossRefGoogle Scholar
  4. 4.
    Henton DE, Gruber P, Lunt J, Randall J (2005) In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibers, biopolymers and biocomposite (chapter 16). CRC Press, Boca Raton, pp 527–577Google Scholar
  5. 5.
    Reeve MS, McCarthy SP, Downey MJ, Gross RA (1994) Macromolecules 27:825–831CrossRefGoogle Scholar
  6. 6.
    Drumright RE, Gruber PR, Henton DE (2000) Adv Mater 12:1841–1845CrossRefGoogle Scholar
  7. 7.
    Langer R, Vacanti JP (2002) Science 260:920–926CrossRefGoogle Scholar
  8. 8.
    Wang Y, Gómez Ribelles JL, Salmerón Sánchez M, Mano JF (2005) Macromolecules 38:4712–4718CrossRefGoogle Scholar
  9. 9.
    Lim LT, Auras R, Rubin M (2008) Prog Polym Sci 22:820–852CrossRefGoogle Scholar
  10. 10.
    Nampoothiri KM, Nair NR, John RP (2010) Bioresour Technol 101:8493–8501CrossRefGoogle Scholar
  11. 11.
    Garlotta D (2002) J Polym Environ 9:63–84CrossRefGoogle Scholar
  12. 12.
    Li Y, Shimizu H (2007) Macromol Biosci 7:921–928CrossRefGoogle Scholar
  13. 13.
    Rasal RM, Janorkar AV, Hirt DE (2010) Prog Polym Sci 35:338–356CrossRefGoogle Scholar
  14. 14.
    Vasanthakumari RA, Pennings J (1983) Polymer 24:175–178CrossRefGoogle Scholar
  15. 15.
    Schmidt SC, Hillmyer MA (2001) J Polym Sci Part B Polym Phys 39:300–313CrossRefGoogle Scholar
  16. 16.
    Ray SS, Maiti P, Okamoto M, Yamada K, Ueda K (2002) Macromolecules 35:3104–3110CrossRefGoogle Scholar
  17. 17.
    Pluta M (2004) Polymer 45:8239–8251CrossRefGoogle Scholar
  18. 18.
    Nam JY, Okamoto M, Okamoto H, Nakano M, Usuki A, Matsuda M (2006) Polymer 47:1340–1347CrossRefGoogle Scholar
  19. 19.
    Tsuji H, Takai H, Fukuda N, Takikawa H (2006) Macromol Mater Eng 291:325–335CrossRefGoogle Scholar
  20. 20.
    Jiang L, Zhang JW, Wolcott MP (2007) Polymer 48:7632–7644CrossRefGoogle Scholar
  21. 21.
    Shieh YT, Liu GL (2007) J Polym Sci Part B Polym Phys 45:1870–1881CrossRefGoogle Scholar
  22. 22.
    Kawamoto N, Sakai A, Horikoshi T, Urushihara T, Tobita E (2007) J Appl Polym Sci 103:198–203CrossRefGoogle Scholar
  23. 23.
    Huang JW, Hung YC, Wen YL, Kang CC, Yeh MY (2009) J Appl Polym Sci 112:3149–3156CrossRefGoogle Scholar
  24. 24.
    Li YL, Wang Y, Liu L, Han L, Xiang FM, Zhou ZW (2009) J Polym Sci Part B Polym Phys 47:326–339CrossRefGoogle Scholar
  25. 25.
    Pan P, Liang Z, Cao A, Inoue Y (2009) ACS Appl Mater Interfaces 1:402–411CrossRefGoogle Scholar
  26. 26.
    Das K, Ray D, Banerrjee I, Bandyopahyay NR, Sengupta S, Mohanty AK, Misra M (2010) J Appl Polym Sci 118:143–151CrossRefGoogle Scholar
  27. 27.
    Su Z, Li Q, Lin Y, Guo W, Wu C (2010) Polym Eng Sci 50:1658–1666CrossRefGoogle Scholar
  28. 28.
    Shieh YT, Twu YK, Su CC, Lin RH, Liu GL (2010) J Polym Sci Part B Polym Phys 48:983–989CrossRefGoogle Scholar
  29. 29.
    Li M, Hu D, Wang Y, Shen C (2010) Polym Eng Sci 50:2298–2305CrossRefGoogle Scholar
  30. 30.
    Tachibana Y, Maeda T, Ito O, Maeda Y, Kunioka M (2010) Polym Degrad Stab 95:1321–1329CrossRefGoogle Scholar
  31. 31.
    Xu Z, Niu Y, Wang Z, Li H, Yang L, Qiu J, Wang H (2011) ACS Appl Mater Interfaces 3:3744–3753CrossRefGoogle Scholar
  32. 32.
    Bai H, Zhang W, Deng H, Zhang Q, Fu Q (2011) Macromolecules 44:1233–1237CrossRefGoogle Scholar
  33. 33.
    Barrau S, Vanmansart C, Moreau M, Addad A, Stoclet G, Lefebvre JM, Seguela R (2011) Macromolecules 44:6496–6502CrossRefGoogle Scholar
  34. 34.
    Li J, Chen D, Gui B, Gu M, Ren J (2011) Polym Bull 67:775–791CrossRefGoogle Scholar
  35. 35.
    Qiu Z, Li Z (2011) Ind Eng Chem Res 50:12299–12303CrossRefGoogle Scholar
  36. 36.
    Xu H, Tang S, Chen J, Yin P, Pu W, Lu Y (2012) Polym Bull 68:1135–1151CrossRefGoogle Scholar
  37. 37.
    Tsujimoto T, Haza Y, Yin Y, Uyama H (2011) Polym J 43:425–430CrossRefGoogle Scholar
  38. 38.
    Hosoda N, Lee EH, Tsujimoto T, Uyama H (2013) Ind Eng Chem Res 52:1548–1553CrossRefGoogle Scholar
  39. 39.
    Ouchi T, Ichimura S, Ohya Y (2006) Polymer 47:429–434CrossRefGoogle Scholar
  40. 40.
    Avrami M (1939) J Chem Phys 7:1103–1112CrossRefGoogle Scholar
  41. 41.
    Avrami M (1940) J Chem Phys 8:212–224CrossRefGoogle Scholar
  42. 42.
    Avrami M (1941) J Chem Phys 9:177–184CrossRefGoogle Scholar
  43. 43.
    Xiao HW, Lu W, Yeh JT (2009) J Appl Polym Sci 113:112–121CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Takashi Tsujimoto
    • 1
  • Shumpei Nishio
    • 1
  • Hiroshi Uyama
    • 1
  1. 1.Department of Applied Chemistry, Graduate School of EngineeringOsaka UniversityOsakaJapan

Personalised recommendations