Journal of Polymers and the Environment

, Volume 23, Issue 3, pp 356–366 | Cite as

Preparation, Characterisation, and Controlled-Release of Biodegradable Polyester and Marine-Algae Composite

  • Chin-San Wu
Original Paper


A composite material composed of maleic anhydride-grafted polycaprolactone (PCL-g-MA) and treated (cross-linked) marine algae powder (TMAP) was used to fabricate bacteria-encapsulated film bag (BEFB) material. The biodegradability of the composite was evaluated with regard to the controlled release of encapsulated bacteria. PCL and PCL-g-MA composite film bags were also assessed. Human lung fibroblasts were seeded onto two series of these composites to assess biocompatibility. The water resistance of PCL-g-MA/TMAP was greater than that of PCL/MAP, although the weight loss of both materials after burial in compost containing Burkholderia cepacia BCRC 14253 indicated comparable biodegradability, especially at high levels of MAP or TMAP substitution. After 120 days, the weight loss of the PCL-g-MA/TMAP (20 wt%) composite was greater than 50 %. PCL/MAP exhibited a weight loss of approximately 4–11 wt% more than PCL-g-MA/TMAP. The complete degradation of PCL, PCL-g-MA, and their composite film bags resulted in the release of encapsulated bacterial cells. These results demonstrate that the controlled release of BEFBs to enhance fertiliser utilisation is achievable.


Polycaprolactone Marine algae Biocompatibility Biodegradation Controlled release 



The author thanks the National Science Council (Taipei City, Taiwan, R.O.C.) for financial support (NSC-102-2621-M-244 -001).


  1. 1.
    Xu MG, Li DC, Li JM, Qin DZ, Kazuyuki Y, Hosen Y (2008) Agric Sci China 7:1245–1252CrossRefGoogle Scholar
  2. 2.
    Kızılkaya R (2008) Ecol Eng 33:150–156CrossRefGoogle Scholar
  3. 3.
    Kumar V, Behl RK, Narula N (2001) Microbiol Res 156:87–93CrossRefGoogle Scholar
  4. 4.
    Sharma SD, Kumar P, Raj H, Bhardwaj SK (2009) Sci Hortic 123:117–123CrossRefGoogle Scholar
  5. 5.
    Cock F, Cuadri AA, García-Morales M, Partal P (2013) Polym Test 32:713–726CrossRefGoogle Scholar
  6. 6.
    Arrieta MP, Lopez J, Hernandez A, Rayon E (2014) Eur Polym J 50:255–270CrossRefGoogle Scholar
  7. 7.
    Woodruff MA, Hutmacher DW (2010) Prog Polym Sci 35:1217–1256CrossRefGoogle Scholar
  8. 8.
    Casas MT, Puiggalí J, Raquez JM, Dubois P, Córdova ME, Müller AJ (2011) Polymer 52:5166–5177CrossRefGoogle Scholar
  9. 9.
    Ludueña LN, Kenny JM, Vázquez A, Alvarez VA (2011) Mater Sci Eng, A 529:215–223CrossRefGoogle Scholar
  10. 10.
    Hubackova J, Dvorackova M, Svoboda P, Mokrejs P, Kupec J, Pozarova I, Alexy P, Bugaj P, Machovsky M, Koutny M (2013) Polym Test 32:1011–1019CrossRefGoogle Scholar
  11. 11.
    Rong HJ, Chen WL, Guo SR, Lei L, Shen YY (2012) Int J Pharm 427:242–251CrossRefGoogle Scholar
  12. 12.
    Laohakunjit N, Selamassakul O, Kerdchoechuen O (2014) Food Chem 158:162–170CrossRefGoogle Scholar
  13. 13.
    Zheng W, Wise ML, Wyrick A, Metz JG, Yuan L, Gerwick WH (2002) Arch Biochem Biophys 401:11–20CrossRefGoogle Scholar
  14. 14.
    Samarakoon K, Jeon YJ (2014) Food Res Int 48:948–960CrossRefGoogle Scholar
  15. 15.
    Garg SK, Bhatnagar A, Kalla A, Narula N (2001) Bioresour Technol 80:101–109CrossRefGoogle Scholar
  16. 16.
    John J, Tang J, Yang Z, Bhattacharya M (1997) J Polym Sci A Polym Chem 35:1139–1148CrossRefGoogle Scholar
  17. 17.
    Luduena L, Vazquez A, Alvarez V (2012) Carbohyd Polym 87:411–421CrossRefGoogle Scholar
  18. 18.
    Sahoo S, Sasmal A, Nanda R, Phani AR, Nayak PL (2010) Carbohyd Polym 79:106–113CrossRefGoogle Scholar
  19. 19.
    Detyothin S, Selke SEM, Narayan R, Rubino M, Auras R (2013) Polym Degrad Stab 98:2697–2708CrossRefGoogle Scholar
  20. 20.
    Pan X, Sengupta P, Webster DC (2011) Biomacromolecules 12:2416–2428CrossRefGoogle Scholar
  21. 21.
    Sadeghi M, Talakesh MM, Ghalei B, Shafiei M (2013) J Membr Sci 427:21–29CrossRefGoogle Scholar
  22. 22.
    Liu C-F, Sun R-C, Qin M-H, Zhang A-P, Ren J-L, Xu F, Ye J, Wu S-B (2007) Ind Crop Prod 26:212–219CrossRefGoogle Scholar
  23. 23.
    Spevacek J, Brus J, Divers T, Grohens Y (2007) Eur Polym J 43:1866–1875CrossRefGoogle Scholar
  24. 24.
    Li Y, Turner SR (2010) Eur Polym J 46:821–828CrossRefGoogle Scholar
  25. 25.
    Robic A, Rondeau-Mouro C, Sassi J-F, Lerat Y, Lahaye M (2009) Carbohyd Polym 77:206–216CrossRefGoogle Scholar
  26. 26.
    Valentín JL, López-Manchado MA, Posadas P, Rodríguez A, Marcos-Fernández A, Ibarra L (2006) J Colloid Interface Sci 298:794–804CrossRefGoogle Scholar
  27. 27.
    Tronc E, Hernandez-Escobar CA, Ibarra-Gomez R, Estrada-Monje A, Navarrete-Bolanos J, Zaragoza-Contreras EA (2007) Carbohyd Polym 67:245–255CrossRefGoogle Scholar
  28. 28.
    Wang T-J, Wang I-J, Chen S, Chen Y-H, Young T-H (2012) Colloid Surf B 90:238–243Google Scholar
  29. 29.
    Gautam S, Chou C-F, Dinda AK, Potdar PD, Mishra NC (2014) Mater Sci Eng C 34:402–409CrossRefGoogle Scholar
  30. 30.
    Fukushima K, Tabuani D, Abbate C, Arena M, Ferreri L (2010) Polym Degrad Stab 95:2049–2056CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Chemical and Biochemical EngineeringKao Yuan UniversityKaohsiung CountyTaiwan, ROC

Personalised recommendations