Journal of Polymers and the Environment

, Volume 23, Issue 2, pp 235–241 | Cite as

Combining Electrophoretic and Fluorescence Method for Screening Fine Structural Variations Among Lignin Model Polymers Differing in Monomer Composition

  • Danka Divović
  • Jelena Bogdanović Pristov
  • Daniela Djikanović
  • Ivan Ristić
  • Ksenija Radotić
Original Paper


Due to the challenges of cell walls (biomass) and its applications in various new technologies, there is a need of rapid and reliable screening of fine variations in lignin structure. The in vitro synthesized lignin model polymers are good experimental system to relate lignin structure/properties with its applications. We used isoelectric focusing electrophoresis (IEF) and fluorescence spectroscopy for screening fine structural variations in lignin model polymers, synthesized from the three lignin monomers, coniferyl alcohol, ferulic acid and p-coumaric acid, mixed in various ratios. The results were related with the thermal behavior of the polymers, revealed by differential scanning calorimetry. Each polymer had characteristic IEF pattern that can be used as its fingerprint. On the basis of the number and intensity of particular bands, it is possible to detect fine differences between polymer patterns, associated with the charge distribution on the polymer fractions. The blue shift of the main fluorescence maximum position of the polymers increased in the same order as temperature of glass transition, i.e. (polymer from coniferyl alcohol) > [polymer from coniferyl alcohol and ferulic acid 9:1 (w/w)] > (polymer from coniferyl alcohol, ferulic acid and p-coumaric acid 8:1:1) > (polymer from coniferyl alcohol and p-coumaric acid 9:1). The results show that the proposed combination of the fluorescence method and IEF may be used to gain complementary information on fine structural differences among the polymers, and influence of the types and ratios of the monomers building the polymer structure.


Lignin model compounds Isoelectric focusing electrophoresis Fluorescence spectroscopy Differential scanning calorimetry Polymer structure 



This work was supported by the Grants 173017 and III45022 from the Ministry of Education, Science and Technology of the Republic of Serbia.


  1. 1.
    Mohanty AKM, Drzal LT, Selke SE, Harte BR, Hinrichsen G(2005) In: AKM Mohanty, LT Drzal (eds) Natural fibers, biopolymers, and biocomposites, Taylor & Francis Group, Boca Raton, p 1Google Scholar
  2. 2.
    Lairez D, Cathala B, Monties B, Bedos-Belval F, Duran H, Gorrichon L (2005) Biomacromolecules 6:763CrossRefGoogle Scholar
  3. 3.
    Sjöström E (1993) Wood chemistry: fundamentals and application. Academic Press, OrlandoGoogle Scholar
  4. 4.
    Boerjan W, Ralph J, Baucher M (2003) Annu Rev Plant Biol 54:519CrossRefGoogle Scholar
  5. 5.
    Lewis NG, Yamamoto E (1990) Annu Rev Plant Physiol Plant Mol Biol 41:455CrossRefGoogle Scholar
  6. 6.
    Whetten R, Sederoff R (1995) Plant Cell 7:1001CrossRefGoogle Scholar
  7. 7.
    Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz P, Marita J, Hatfield R, Ralph S, Christensen J et al (2004) Phytochemistry 3:29CrossRefGoogle Scholar
  8. 8.
    Vanholme R, Morreel K, Ralph J, Boerjan W (2008) Curr Opin Plant Biol 11:278CrossRefGoogle Scholar
  9. 9.
    Björkman A (1957) Sven Papperstidning 60:243Google Scholar
  10. 10.
    Freudenberg K (1964) In: M Zimmermann (ed) The formation of wood in forest trees, Springer-Verlag, New York, p 203Google Scholar
  11. 11.
    Lewis SM, Montgomery L, Garleb KA, Berger LL, Fahey GC (1988) Appl Environ Microbiol 54:1163Google Scholar
  12. 12.
    Terashima N, Atalla RH, Ralph SA, Landucci LL, Lapierre C, Monties B (1995) Holzforschung 49:521CrossRefGoogle Scholar
  13. 13.
    Radotić K, Kalauzi A, Djikanović D, Jeremić M, Leblanc RM, Cerović ZG (2006) J Photochem Photobiol B: Biol 83:1CrossRefGoogle Scholar
  14. 14.
    Djikanović D, Kalauzi A, Jeremić M, Mićić M, Radotić K (2007) Colloids Surf B: Biointerfaces 54:188CrossRefGoogle Scholar
  15. 15.
    Djikanović D, Kalauzi A, Radotić K, Jeremić M (2007) Russ J Phys Chem 81:1425CrossRefGoogle Scholar
  16. 16.
    Kalauzi A, Mutavdžić D, Djikanović D, Radotić K, Jeremić M (2007) J Fluoresc 17:319CrossRefGoogle Scholar
  17. 17.
    Djikanović D, Simonović J, Savić A, Ristić IS, Bajuk-Bogdanović DV, Kalauzi A, Cakić SM, Budinski-Simendić JK, Jeremić M, Radotić K (2012) J Polym Environ 20:607CrossRefGoogle Scholar
  18. 18.
    Cherr GN, Fan TWM, Pillai MC, Shields T, Higashi RM (1993) Anal Biochem 214:521CrossRefGoogle Scholar
  19. 19.
    Sáiz-Jiménez C, Trubetskaya OE, Trubetskoj OA, Hermosin B (1999) Commun Soil Sci Plant 30:345CrossRefGoogle Scholar
  20. 20.
    Niku-Paavola ML (1991) Anal Biochem 197:101CrossRefGoogle Scholar
  21. 21.
    Freudenberg K (1956) Angew Chem 68:84CrossRefGoogle Scholar
  22. 22.
    Wayman M, Obiaga TI (1974) Can J Chem 52:2102CrossRefGoogle Scholar
  23. 23.
    Stevens MP (1999) Polymer chemistry: an introduction, 3rd edn. Oxford U. Press, New YorkGoogle Scholar
  24. 24.
    Tatamitani Y, Liu B, Shimada J, Ogata T, Ottaviani P, Maris A, Caminati W, Alonso JL (2002) J Am Chem Soc 124:3739CrossRefGoogle Scholar
  25. 25.
    Meszko J, Krzymiński K, Konitz A, Błażejowski J (2002) Acta Crystallogr C58:157Google Scholar
  26. 26.
    Iiyama K, Lam TBT, Stone BA (1994) Plant Physiol 104:315Google Scholar
  27. 27.
    Lam TBT, Iiyama K, Stone BA (1992) Phytochemistry 31:1179CrossRefGoogle Scholar
  28. 28.
    Saulnier L, Crépeau M-J, Lahaye M, Thibault J-F, Garcia-Conesa MT, Kroon PA, Williamson G (1999) Carbohydr Res 320:82CrossRefGoogle Scholar
  29. 29.
    Jacquet G, Pollet B, Lapierre CJ (1995) Agric Food Chem 43:2746CrossRefGoogle Scholar
  30. 30.
    Buanafina MMD (2009) Mol Plant 2:861CrossRefGoogle Scholar
  31. 31.
    Glasser WG, Jain RK (1993) Holzforschung 47:225CrossRefGoogle Scholar
  32. 32.
    Lisperguer J, Perez P, Urizar S (2009) J Chil Chem Soc 54:460CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Danka Divović
    • 1
    • 3
  • Jelena Bogdanović Pristov
    • 1
  • Daniela Djikanović
    • 1
  • Ivan Ristić
    • 2
  • Ksenija Radotić
    • 1
  1. 1.Institute for Multidisciplinary ResearchUniversity of BelgradeBelgradeSerbia
  2. 2.Department of Materials Engineering, Faculty of TechnologyUniversity of Novi SadNovi SadSerbia
  3. 3.Nova VarošSerbia

Personalised recommendations