Journal of Polymers and the Environment

, Volume 23, Issue 2, pp 206–215 | Cite as

Biodegradability and Compostability of Nanofibrillar Cellulose-Based Products

  • M. Vikman
  • J. Vartiainen
  • I. Tsitko
  • P. Korhonen
Original Paper


Biodegradability and compostability of nanofibrillar cellulose-based (NFC) products including films, concentrated NFC and paper products containing NFC were evaluated under controlled composting conditions. All the NFC products tested were biodegradable according to the requirements set in European standard EN 13432. NFC even enhanced the rate of biodegradability of paper containing 1.5 % NFC as an additive. Disintegration during composting was evaluated using the modified pilot-scale composting test EN 14045. NFC films disintegrated completely in 3 weeks of composting, and NFC did not influence the degradability of paper products containing NFC. Ecotoxicity during biodegradation of NFC products in a compost environment was evaluated using a bioluminescence test with Vibrio fischeri. No acute toxicity was detected for any of the samples.


Nanofibrillar cellulose Cellulose nanofibrils Biodegradation Composting Ecotoxicity 



UPM Biofibrils were supplied by UPM-Kymmene. The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007–2013) under Grant Agreement No. 247989 (NanoSustain—Development of sustainable solutions for nanotechnology-based products based on hazard characterization and LCA). The authors wish also to thank Tarja Eriksson and Anna Lehtonen for valuable assistance.


  1. 1.
    Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33CrossRefGoogle Scholar
  2. 2.
    Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 2011(50):5438–5466CrossRefGoogle Scholar
  3. 3.
    Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose: its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735CrossRefGoogle Scholar
  4. 4.
    Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposite. Chem Soc Rev 40:3941–3994CrossRefGoogle Scholar
  5. 5.
    Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRefGoogle Scholar
  6. 6.
    Khalil A, Davoudpour Y, Islam NM, Mustapha A, Sudesh K, Dungani R, Jawaid M (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665CrossRefGoogle Scholar
  7. 7.
    Österberg Ö, Vartiainen J, Lucenius J, Hippi U, Seppälä J, Serimaa R, Laine J (2013) A fast method to produce strong NFC films as a platform for barrier and functional materials. ACS Appl Mater Interfaces 5:4640–4647CrossRefGoogle Scholar
  8. 8.
    Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci Appl Polym Symp 37:815–823Google Scholar
  9. 9.
    Iotti M, Carrasco GC, Syverud K (2011) Too cool for school, nanofibrillar cellulose and their industrial promising future in combination with bioplastics. Bioplastics Magazine 04 July/Aug 2011, 20–21Google Scholar
  10. 10.
    Vartiainen J, Vikman M (2013) Health and environmental safety aspects of NFC. In: Production and applications of cellulose nanomaterials. TAPPI Press, pp 57–58Google Scholar
  11. 11.
    Okubo K, Fujii T, Thostenson ET (2009) Multi-scale hybrid biocomposite: processing and mechanical characterization of bamboo fiber reinforced PLA with microfibrillated cellulose. Compost Part A Appl Sci Manufact 40:469–475CrossRefGoogle Scholar
  12. 12.
    Vartiainen J, Kaljunen T, Kunnari V, Lahtinen P, Salminen A, Seppälä J, Tammelin T (2013) Nanocellulose films: Towards large scale and continuous production. 26th IAPRI symposium on packaging, 10–13 June 2013, Espoo, Finland. Proceedings of 26th IAPRI Symposium on Packaging 2013, pp 197–209Google Scholar
  13. 13.
    Vartiainen J, Pöhler T, Sirola K, Pylkkänen L, Alenius H, Hokkinen J, Tapper U, Lahtinen P, Kapanen A, Putkisto K, Hiekkataipale P, Eronen P, Ruokolainen J, Laukkanen A (2011) Health and environmental safety aspects of friction grinding and spray drying of microfibrillated cellulose. Cellulose 18(3):775–786CrossRefGoogle Scholar
  14. 14.
    Pöhler T, Lappalainen T, Tammelin T, Eronen P, Hiekkataipale P, Vehniäinen A, Koskinen TM (2010) Influence of fibrillation method on the character of nanofibrillated cellulose (NFC) TAPPI International Conference on Nanotechnology for the Forest; Product Industry, Dipoli Congress Centre, Espoo, Finland, 27–29 Sept 2010. Tappi, 437–458Google Scholar
  15. 15.
    Itävaara M, Vikman M, Kapanen A, Venelampi O, Vuorinen A (2006) Compost maturity—Method book (in Finnish). VTT—Research notes 2351, p 38Google Scholar
  16. 16.
    Itävaara M, Vikman M, Maunuksela L, Vuorinen A (2010) Maturity tests for composts: verification of a test scheme for assessing maturity. Compost Sci Util 18:174–183CrossRefGoogle Scholar
  17. 17.
    Kapanen A (2012) Ecotoxicity assessment of biodegradable plastics and sewage sludge in compost and in soil. VTT Science 9Google Scholar
  18. 18.
    Tuominen J, Kylmä J, Kapanen A, Venelampi O, Itävaara M, Seppälä J (2002) Biodegradation of lactic acid based polymers under controlled composting conditions and evaluation of the ecotoxicological impact. Biomacromolecules 2002(3):445–455CrossRefGoogle Scholar
  19. 19.
    Kapanen A, Stephen JR, Brüggemann J, Kiviranta A, White DC, Itävaara M (2007) Diethyl phthalate in compost: ecotoxicological effects and response of the microbial community. Chemosphere 67:2201–2209CrossRefGoogle Scholar
  20. 20.
    Vikman M, Itävaara M, Poutanen K (1995) Measurement of the biodegradation of starch-based materials by enzymatic method and composting. J Environ Polym Deg 3(1):23–29CrossRefGoogle Scholar
  21. 21.
    European Bioplastics association (2010) Fact sheet 2010, Home compostingGoogle Scholar
  22. 22.
    Klauß M (2004) Degradation of biologically degradable packaging items in home or backyard com-posting systems with special focus on the pilot scale field test for compostable packing in kassel. Rhombos Verlag Berlin, GermanyGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • M. Vikman
    • 1
  • J. Vartiainen
    • 1
  • I. Tsitko
    • 1
  • P. Korhonen
    • 2
  1. 1.VTT Technical Research Centre of FinlandEspooFinland
  2. 2.UPM-Kymmene OyjHelsinkiFinland

Personalised recommendations