Advertisement

Journal of Polymers and the Environment

, Volume 23, Issue 1, pp 62–71 | Cite as

Rheological and Thermal Properties of Peroxide-Modified Poly(l-lactide)s for Blending Purposes

  • M. B. Khajeheian
  • A. Rosling
Original Paper

Abstract

Poly-l-lactide (PLLA) is a widely used sustainable and biodegradable alternative to replace synthetic plastic materials in the packaging industry. Unfortunately, its processing properties are not always optimal, e.g. insufficient melt strength at higher temperatures needed in extrusion coating processes is recognized. In the present work, one have addressed the problem by peroxide modification of commercial PLLA in order to obtain chain branching. Reactive extrusion of PLLA has been carried out in the presence of 0.1, 0.3 and 0.5 wt% of various peroxides [tert-butyl-peroxybenzoate, 2,5-dimethyl-2,5-(tert-butylperoxy)-hexane (Lupersol 101) and benzoyl peroxide]. The peroxides were chosen due to their different decomposition rates at a reactive extrusion temperature of 190 °C. Changes in thermal properties (differential scanning calorimeter) and dynamic rheology, where studied. The rheological analyses were conducted at 240 °C as to mimic typical PLLA extrusion coating conditions. The peroxide-treated PLLAs showed increased complex viscosity and storage modulus at lower frequencies indicating the formation of branched/cross linked architectures. The branching is also supported by the size exclusion chromatography-chromatogram signals revealing the development of higher molecular weight species. The material property changes were dependent on the peroxide and the used peroxide concentration. Gel fraction analysis showed that the peroxides afforded different gel contents and especially 0.5 wt% peroxide produces both an extremely high molar mass and a cross linked structure, not perhaps well suited e.g., for further use in a blending step. The thermal behavior was somewhat unexpected as the materials prepared with 0.5 wt% peroxide showed the highest ability for crystallization and cold crystallization despite substantial cross linking.

Keywords

Poly-lactide Reactive extrusion Peroxide Branching Rheology Molecular weight Food packaging 

Notes

Acknowledgments

The authors wish to thank the Finnish Funding Agency for Technology and Innovation (TEKES) for financial support. We also wish to extend our sincere appreciation to Stora Enso Oyj.

References

  1. 1.
    Rhim J, Ng PKW (2007) Crit Rev Food Sci Nutr 47:411–433CrossRefGoogle Scholar
  2. 2.
    Hartmann M, Whiteman N (2000) In polylactide, a new thermoplastic for extrusion coating, vol 1. TAPPI Press, Atlanta, pp 467–474Google Scholar
  3. 3.
    Lahtinen K, Maydannik P, Johansson P, Kääriäinen T, Cameron DC, Kuusipalo J (2011) Surf Coat Technol 205:3916–3922CrossRefGoogle Scholar
  4. 4.
    Ryan CM, Hartmann MH (1997) In Branching of poly(lactic acid) to increase melt strength for extrusion coating, vol 1. TAPPI Press, Atlanta, pp 139–144Google Scholar
  5. 5.
    Kang GB, Kim MH, Son Y, Park OO (2009) J Appl Polym Sci 111:3121–3127CrossRefGoogle Scholar
  6. 6.
    Toft N, Rigdahl M (2002) Int Polym Process 17:244–253CrossRefGoogle Scholar
  7. 7.
    Lachtermacher MG, Rudin A (1995) J Appl Polym Sci 58:2077–2094CrossRefGoogle Scholar
  8. 8.
    Ouchi T, Ichimura S, Ohya Y (2006) Polymer 47:429–434CrossRefGoogle Scholar
  9. 9.
    Korhonen H, Helminen A, Seppälä JV (2001) Polymer 42:7541–7549CrossRefGoogle Scholar
  10. 10.
    Liu J, Lou L, Yu W, Liao R, Li R, Zhou C (2010) Polymer 51:5186–5197CrossRefGoogle Scholar
  11. 11.
    Soedergaard A, Niemi M, Selin J, Naesman JH (1995) Ind Eng Chem Res 34:1203–1207CrossRefGoogle Scholar
  12. 12.
    Carlson D, Dubois P, Nie L, Narayan R (1998) Polym Eng Sci 38:311–321CrossRefGoogle Scholar
  13. 13.
    Takamura M, Nakamura T, Takahashi T, Koyama K (2008) Polym Degrad Stab 93:1909–1916CrossRefGoogle Scholar
  14. 14.
    Dean KM, Petinakis E, Meure S, Yu L, Chryss A (2012) J Polym Environ 20:741–747CrossRefGoogle Scholar
  15. 15.
    Sungsanit K, Kao N, Bhattacharya S, Pivsaart S (2010) Korea Aust Rheol J 22:187–195Google Scholar
  16. 16.
    Dorgan JR, Lehermeier H, Mang M (2000) J Polym Environ 8:1CrossRefGoogle Scholar
  17. 17.
    Liu J, Yu W, Zhou C (2011) J Rheol 55:545–570CrossRefGoogle Scholar
  18. 18.
    Takamura M, Nakamura T, Kawaguchi S, Takahashi T, Koyama K (2010) Polym J 42:600–608CrossRefGoogle Scholar
  19. 19.
    Soedergard A, Naesman JH (1994) Polym Degrad Stab 46:25–30CrossRefGoogle Scholar
  20. 20.
    Takamura M, Sugimoto M, Kawaguchi S, Takahash T, Koyama K (2012) J Appl Polym Sci 123:1468–1478CrossRefGoogle Scholar
  21. 21.
    Ramos VD, da Costa HM, Pereira AO, Rocha MCG, de S. Gomes A (2004) Polym Test 23:949–955Google Scholar
  22. 22.
    Zulli F, Andreozzi L, Passaglia E, Augier S, Giordano M (2013) J Appl Polym Sci 127:1423–1432CrossRefGoogle Scholar
  23. 23.
    Wu D, Wu L, Zhang M, Zhao Y (2008) Polym Degrad Stab 93:1577–1584CrossRefGoogle Scholar
  24. 24.
    Schulze D, Roths T, Friedrich C (2005) Rheol Acta 44:485–494CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Functional Materials Center, Laboratory of Polymer TechnologyÅbo Akademi UniversityTurku/ÅboFinland

Personalised recommendations