Advertisement

Journal of Polymers and the Environment

, Volume 23, Issue 1, pp 1–10 | Cite as

Kinetic Studies on the Thermal Dehydration and Degradation of Chitosan and Citralidene Chitosan

  • K. Muraleedharan
  • P. Alikutty
  • V. M. Abdul Mujeeb
  • K. Sarada
Original Paper

Abstract

The thermal dehydration and degradation of chitosan and citralidene chitosan was studied by differential scanning calorimetry at four different heating rates; 5, 10, 15 and 20 K min−1. The kinetics of thermal dehydration and degradation of chitosan and citralidene chitosan was investigated using different isoconversional and maximum rate (peak) methods viz. Kissinger–Akahira–Sunose (KAS), Tang, Starink1.95, Starink1.92, Flynn–Wall–Ozawa (FWO) and Bosewell. The activation energy values of thermal dehydration and degradation reactions obtained from isoconversional methods of FWO and Bosewell are slightly higher than that obtained from other methods. The variation of activation energy, E α with conversion function, α, established using these different methods were found to be similar. Compared to the FWO method, the KAS method offers a significant improvement in the accuracy of the E a values. All the maximum rate (peak) methods yielded consistent values of E α for the dehydration and degradation reactions of both chitosan and CIT-chitosan

Keywords

Chitosan Citralidene chitosan Dehydration kinetics Degradation kinetics Isoconversional methods Maximum rate methods 

References

  1. 1.
    Muzzarelli RAA (1973) Natural chelating polymers. Pergamon Press, Oxford, p 254Google Scholar
  2. 2.
    Amit B, Milka S (2009) Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater—a short review. Adv Colloid Interface Sci 152:26–38CrossRefGoogle Scholar
  3. 3.
    Guibal E (2004) Interactions of metal ions with chitosan-based sorbents: a review. Sep Purif Technol 38:43–74CrossRefGoogle Scholar
  4. 4.
    Wu F, Tseng R, Juang R (2010) A review and experimental verification of using chitosan and its derivatives as adsorbents for selected heavy metals. J Environ Manage 91:798–806CrossRefGoogle Scholar
  5. 5.
    Wang FY, Wang H, Ma JW (2010) Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent—Bamboo charcoal. J Hazard Mater 177:300–306CrossRefGoogle Scholar
  6. 6.
    Kittur FS, Harish PKV, Sankar KU, Tharanathan RN (2002) Characterization of chitin, chitosan and their carboxymethyl derivatives by differential scanning calorimetry. Carbohydr Polym 49:185–193CrossRefGoogle Scholar
  7. 7.
    Peniche C, Carlos E, Roman JS (1998) Interpolymer complexes of chitosan and polymethacrylic derivatives of salicylic acid: preparation, characterization and modification by thermal treatment. Polymer 39:6549–6554CrossRefGoogle Scholar
  8. 8.
    Velyana G, Dilyana Z, Lyubomir V (2012) Non-isothermal kinetics of thermal degradation of chitosan. Chem Central J 6:81–91CrossRefGoogle Scholar
  9. 9.
    de Douglas B (2007) Sergio Paulo C. Kinetics of the thermal degradation of chitosan. Thermochim Acta 465:73–82CrossRefGoogle Scholar
  10. 10.
    Shen-Kun L, Chi-Chih H, Ming-Fung L (2004) A kinetic study of thermal degradations of chitosan/polycaprolactam blends. Macromol Res 12:466–473CrossRefGoogle Scholar
  11. 11.
    Tirkistani FAA (1998) Thermal analysis of some chitosan schiff bases. Polym Degrad Stab 60:67–70CrossRefGoogle Scholar
  12. 12.
    Ikejima T, Yogi K, Inonu Y (1999) Thermal properties and crystallization behavior of poly(3-hydroxybutyric acid) in blends with chitin and chitosan. Macromol Chem Phys 200:413–421CrossRefGoogle Scholar
  13. 13.
    Chun-Yan O, Chao-Hua Z, Si-Dong L, Lei Y, Jing-Jing D, Xue-Liu M, Mu-Ting Z (2010) Thermal degradation kinetics of chitosan-cobalt complex as studied by thermogravi-metric analysis. Carbohydr Polym 82:1284–1289CrossRefGoogle Scholar
  14. 14.
    Si-Dong Li, Chao-Hua Z, Jing-Jing D, Chun-Yan O, Wei-Yan Q, Lei Y, Xiao-Dong S (2010) Effect of cupric ion on thermal degradation of quaternized chitosan. Carbohydr Polym 81:182–187CrossRefGoogle Scholar
  15. 15.
    Coats AW, Redfern JP (1964) Kinetic parameters from thermogravimetric data. Nature 201:68–69CrossRefGoogle Scholar
  16. 16.
    Vlaev L, Nedelchev N, Gyurova K, Zagorcheva M (2000) A comparative study of non-isothermal kinetics of decomposition of calcium oxalate monohydrate. J Anal Appl Pyrol 81:253–262CrossRefGoogle Scholar
  17. 17.
    Atanassov A, Genieva S, Vlaev L (2010) Study of the thermooxidative degradation kinetics of tetrafluoroethylene-ethylene copolymer filled with rice husks ash. Polym Plast Technol Eng 49:541–554CrossRefGoogle Scholar
  18. 18.
    Boonchom B, Puttawong S (2010) Thermodynamics and kinetics of the dehydration reaction of FePO4·2H2O. Phys B 405:2350–2355CrossRefGoogle Scholar
  19. 19.
    Boonchom B, Thongkam M (2010) Kinetics and thermodynamics of the formation of MnFeP4O12. J Chem Eng Data 55:211–216CrossRefGoogle Scholar
  20. 20.
    He W, Deng F, Liao G-X, Lin W, Jiang Y-Y, Jian X-G (2010) Kinetics of thermal degradation of poly(aryl ether) containing phthalazinone and life estimation. J Thermal Anal Calorim 100:1055–1062CrossRefGoogle Scholar
  21. 21.
    Vyazovkin S, Sbirrazzuoli N (2002) Isoconversional analysis of the non-isothermal crystallization of a polymer melt. Macromol Rapid Commun 23:766–770CrossRefGoogle Scholar
  22. 22.
    Vyazovkin S, Sbirrazzuoli N (2003) Estimating the activation energy for non-isothermal crystallization of polymer melts. J Therm Anal Calorim 72:681–686CrossRefGoogle Scholar
  23. 23.
    Starink MJ (2003) The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta 404:163–176CrossRefGoogle Scholar
  24. 24.
    Vyazovkin S, Sbirrazzuoli N (2004) Isoconversional approach to evaluating the Hoffman-Lauritzen parameters (U* and Kg) from the overall rates of non-isothermal crystallization. Macromol Rapid Commun 25:733–738CrossRefGoogle Scholar
  25. 25.
    Khawam A, Flanagan DR (2005) Role of isoconversional methods in varying activation energies of solid-state kinetics: II. Non-isothermal kinetic studies. Thermochim Acta 436:101–112CrossRefGoogle Scholar
  26. 26.
    Vyazovkin S (2006) Model-free kinetics, staying free of multiplying entities without necessity. J Therm Anal Calorim 83:45–51CrossRefGoogle Scholar
  27. 27.
    Vyazovkin S, Sbirrazzuoli N (2006) Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun 27:1515–1532CrossRefGoogle Scholar
  28. 28.
    Starink MJ (2007) Activation energy determination for linear heating experiments: deviations due to neglecting the low temperature end of the temperature integral. J Mater Sci 42:483–489CrossRefGoogle Scholar
  29. 29.
    Simon P (2004) Isoconversional methods. J Therm Anal Calorim 76:123–132CrossRefGoogle Scholar
  30. 30.
    Joraid AA, Abu-Sehly AA, El-Oyoun MA, Alamri SN (2008) Non-isothermal crystallization kinetics of amorphous Te51.3As45.7Cu3. Thermochim Acta 470:98–104CrossRefGoogle Scholar
  31. 31.
    Akahira T, Sunose T, Trans joint convention of four electrical Institutes, paper no. 246 (1969) Research report, Chiba Institute of Technology. Sci Technol 1971(16):22–31Google Scholar
  32. 32.
    Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706CrossRefGoogle Scholar
  33. 33.
    Aboulkas A, El Harfi K, El Bouadili A, Benchanaa M, Mokhlisse A, Outzourit A (2007) Kinetics of co-pyrolysis of Tarfaya (Morocco) oil shale with high-density polyethylene. Oil Shale 24:15–33Google Scholar
  34. 34.
    Murray P, White J (1955) Kinetics of the thermal dehydration of clays IV. Thermal analysis of the clay minerals. Trans Br Ceram Soc 54:204–238Google Scholar
  35. 35.
    Tang W, Liu Y, Zhang H, Wang C (2003) New approximate formula for Arrhenius temperature integral. Thermochim Acta 408:39–43CrossRefGoogle Scholar
  36. 36.
    Starink MJ (1996) A new method for the derivation of activation energies from experiments performed at constant heating rate. Thermochim Acta 288:97–104CrossRefGoogle Scholar
  37. 37.
    Flynn J, Wall LA (1966) A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Lett 4:323–328CrossRefGoogle Scholar
  38. 38.
    Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38:1881–1886CrossRefGoogle Scholar
  39. 39.
    Doyle C (1961) Kinetic analysis of thermogravimetric data. J Appl Polym Sci 5:285–292CrossRefGoogle Scholar
  40. 40.
    Boswell PG (1980) On the calculation of activation energies using a modified Kissinger method. J Therm Anal 18:353–358CrossRefGoogle Scholar
  41. 41.
    Kissinger HE (1956) Variation of peak temperature with heating rate in differential thermal analysis. J Res Nat Bur Stand 57:217–221CrossRefGoogle Scholar
  42. 42.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data-review. Thermochim Acta 520:1–19CrossRefGoogle Scholar
  43. 43.
    Rao CNR (1963) Chemical applications of infra red spectroscopy. Academic Press, New York, p 365Google Scholar
  44. 44.
    Starink MJ, Van Mourik P (1992) Cooling and heating rate dependence of precipitation in an Al–Cu alloy. Mater Sci Eng A 156:183–194CrossRefGoogle Scholar
  45. 45.
    Starink MJ (1997) On the applicability of isoconversion methods for obtaining the activation energy of reactions within a temperature dependent equilibrium state. J Mater Sci 32:6505–6512CrossRefGoogle Scholar
  46. 46.
    Jose´ ES, Dockala ER, Cavalheirob ETG (2005) Synthesis and characterization of schiff bases from chitosan and salicylaldehyde derivatives. Carbohydr Polym 60:277–282CrossRefGoogle Scholar
  47. 47.
    Jin X, Wang J, Bai J (2009) Synthesis and antimicrobial activity of the schiff base from chitosan and citral. Carbohydr Res 344:825–829CrossRefGoogle Scholar
  48. 48.
    Jiao TF, Zhou J, Zhou JX, Gao L, Xing YY, Li X (2011) Synthesis and characterization of chitosan-based schiff base compounds with aromatic substituent groups. Iran Polym J 20:123–136Google Scholar
  49. 49.
    Shah HV, Babb DA, Smith DW Jr (2000) Bergman cyclopolymerization kinetics of bis-ortho-diynylarenes to polynaphthalene networks. A comparison of calorimetric methods. Polymer 41:4415–4422CrossRefGoogle Scholar
  50. 50.
    Muraleedharan K, Kripa S (2014) DSC kinetics of the thermal decomposition of copper(II) oxalate by isoconversional and maximum rate (peak) methods. J Therm Anal Calorim 115:1969–1978CrossRefGoogle Scholar
  51. 51.
    Crini G, Badot P (2008) Application of chitosan, a natural amino polysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog Polym Sci 33:399–447CrossRefGoogle Scholar
  52. 52.
    Sashiwa H, Shigemasa Y (1999) Chemical modification of chitin and chitosan 2; preparation and water soluble property of N-acylated or N-alkylated partially deacetylated chitins. Carbohydr Polym 39:127–138CrossRefGoogle Scholar
  53. 53.
    Guinesi LS, Cavalheiro ETG (2006) Influence of the degree of substitution in biopolymeric Schiff bases on the kinetic of thermal decomposition by non-isothermal procedure. Thermochim Acta 449:1–7CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • K. Muraleedharan
    • 1
  • P. Alikutty
    • 1
  • V. M. Abdul Mujeeb
    • 1
  • K. Sarada
    • 1
  1. 1.Depatment of ChemistryUniversity of CalicutMalappuramIndia

Personalised recommendations