Journal of Polymers and the Environment

, Volume 22, Issue 4, pp 488–493 | Cite as

Biosynthesis of Poly(3-hydroxyalkanoate) from Amino Acids in Medium with Nitrogen, Phosphate, and Magnesium, or Some Combination of These Nutrients

  • Manato Sakamoto
  • Yuuki Kimura
  • Daisuke Ishii
  • Takahiko Nakaoki
Original Paper


Twenty natural amino acids were investigated as carbon sources for biosynthesis of poly(3-hydroxyalkanoate) (PHA) by Ralstonia eutropha in media free of inorganic nitrogen, phosphate, or magnesium. First, the effect of limiting nitrogen, phosphate, and magnesium was investigated on the metabolism of l-leucine. Nitrogen-limited media have been widely used to stimulate PHA accumulation, but phosphate-free media lead to higher accumulation. This is because amino acids can act as nitrogen sources, leading to preferential cell growth over PHA accumulation. Magnesium-free conditions don’t show a significant effect on accumulation of PHA. When Ralstonia eutropha was cultivated in the presence of natural amino acids l-leucine, l-isoleucine, l-phenylalanine, and l-tyrosine in media free of nitrogen, phosphate, and magnesium, the PHA content was high, over 40 % of dry weight. Accumulation of PHA on supplementation with mixed substrates of l-leucine and various other amino acids was investigated in nitrogen-, phosphate-, and magnesium-free medium. Culturing with most mixed substrates led to accumulation of PHA, but some led to low or no PHA yield in spite of high PHA yield when metabolized from l-leucine alone. l-cysteine as a sole carbon source showed a unique feature, in that cell growth was significantly preferred over PHA accumulation. A mixed substrate of l-leucine and l-cysteine provided high PHA accumulation because of the combination of PHA accumulation due to l-leucine and cell growth due to l-cysteine. When glucose was used instead of l-leucine in a mixed substrate with l-cysteine, the PHA content was much lower because l-cysteine acts as an inhibitor of glucose metabolism. These results showed that the precise combination of carbon sources is an important factor in accumulation of PHA.


Biosynthesis Poly(3-hydroxybutyrate) Amino acid Phosphate-free medium R. eutropha 



This work was partially supported by a Grant-in-Aid for Scientific Research, MEXT (No. 24550179). In addition, financial support from a research fund at Ryukoku University is gratefully acknowledged.


  1. 1.
    Holmes PA (1985) Phys Technol 16:32CrossRefGoogle Scholar
  2. 2.
    Doi Y, Tamaki A, Kunioka M, Soga K (1987) J Chem Soc Chem Commun 1635Google Scholar
  3. 3.
    Doi Y, Tamaki A, Kunioka M, Soga K (1998) Appl Microbiol Biotechnol 28:330CrossRefGoogle Scholar
  4. 4.
    Mitomo H, Morishiota N, Doi Y (1993) Macromolecules 26:5809CrossRefGoogle Scholar
  5. 5.
    Yoshie N, Menju H, Sato H, Inoue Y (1995) Macromolecules 28:6516CrossRefGoogle Scholar
  6. 6.
    Yoshie N, Fujiwara M, Kasuya K, Abe H, Doi Y, Inoue Y (1993) Macromolecules 26:5809CrossRefGoogle Scholar
  7. 7.
    Yoshie N, Fujiwara M, Kasuya K, Abe H, Doi Y, Inoue Y (1999) Macromol Chem Phys 200:977CrossRefGoogle Scholar
  8. 8.
    Mothes G, Schnorpfeil C, Ackmann JU (2007) Eng Life Sci 7:475CrossRefGoogle Scholar
  9. 9.
    Cavalheiro JMBT, Dealmeida MCMD, Grandfils C, Dafonseca MMR (2009) Process Biochem 44:509CrossRefGoogle Scholar
  10. 10.
    Zhu C, Nomura CT, Perrotta JA, Stipanovic AJ, Nakas JP (2010) Biotechnol Prog 26:424Google Scholar
  11. 11.
    Huijberts GNM, Eggink G, Waard P, Huisman GW, Witholt B (1992) Appl Environ Microbiol 58:536Google Scholar
  12. 12.
    Ashby RD, Solaiman DKY, Foglia TA (2005) Biomacromolecules 6:2106CrossRefGoogle Scholar
  13. 13.
    Cromwick AM, Foglia TA, Lenz RW (1996) Appl Microbiol Biotechnol 46:464CrossRefGoogle Scholar
  14. 14.
    Ashby RD, Foglia TA (1998) Appl Microbiol Biotechnol 49:431CrossRefGoogle Scholar
  15. 15.
    Solaiman DKY, Ashby RD, Foglia TA (2001) Appl Microbiol Biotechnol 56:664CrossRefGoogle Scholar
  16. 16.
    Solaiman DKY, Ashby RD, Foglia TA (2002) Curr Microbiol 44:189CrossRefGoogle Scholar
  17. 17.
    Miura T, Ishii D, Nakaoki T (2013) J Polym Environ 21:760Google Scholar
  18. 18.
    Nakamura K, Goto Y, Yoshie N, Inoue Y, Chujo R (1992) Int J Biol Macromol 14:117CrossRefGoogle Scholar
  19. 19.
    Nakamura K, Goto Y, Yoshie N, Inoue Y (1992) Int J Biol Macromol 14:321CrossRefGoogle Scholar
  20. 20.
    Fujita M, Nakamura K, Kuroki H, Yoshie N, Inoue Y (1993) Int J Biol Macromol 15:253CrossRefGoogle Scholar
  21. 21.
    Fujita M, Nakamura K, Ohta O, Kuroki H, Yoshie N, Inoue Y (1994) Macromol Chem Phys 195:3699CrossRefGoogle Scholar
  22. 22.
    Kimura H, Mouri K, Takeishi M, Endo T (2003) Bull Chem Soc Jpn 76:1775CrossRefGoogle Scholar
  23. 23.
    Anderson AJ, Dawes EA (1990) Microbiol Rev 54:450Google Scholar
  24. 24.
    Brandl H, Gross RA, Lenz RW, Fuller RC (1990) Adv Biochem Eng Biotechnol 41:77Google Scholar
  25. 25.
    Doi Y (1990) Microbial polyesters. Verlag Chemie, New YorkGoogle Scholar
  26. 26.
    Ryu HW, Hahn SK, Chang YK, Chang HN (1997) Biotehnol Bioeng 55:28CrossRefGoogle Scholar
  27. 27.
    Hee WR, Sei KH, Yong KC, Ho NC (1997) Biotechnol Bioeng 55:28CrossRefGoogle Scholar
  28. 28.
    Longan S, Min J, Ho NC (2003) Biotechnol Lett 25:1415CrossRefGoogle Scholar
  29. 29.
    Squio CR, Marangoni C, Vecchi CSD, Aragao GMF (2003) Appl Microbiol Biotechnol 61:257CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Manato Sakamoto
    • 1
  • Yuuki Kimura
    • 1
  • Daisuke Ishii
    • 1
  • Takahiko Nakaoki
    • 1
  1. 1.Department of Materials ChemistryRyukoku UniversitySeta, OtsuJapan

Personalised recommendations