Skip to main content
Log in

Biosynthesis of Poly(3-hydroxyalkanoate) from Amino Acids in Medium with Nitrogen, Phosphate, and Magnesium, or Some Combination of These Nutrients

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Twenty natural amino acids were investigated as carbon sources for biosynthesis of poly(3-hydroxyalkanoate) (PHA) by Ralstonia eutropha in media free of inorganic nitrogen, phosphate, or magnesium. First, the effect of limiting nitrogen, phosphate, and magnesium was investigated on the metabolism of l-leucine. Nitrogen-limited media have been widely used to stimulate PHA accumulation, but phosphate-free media lead to higher accumulation. This is because amino acids can act as nitrogen sources, leading to preferential cell growth over PHA accumulation. Magnesium-free conditions don’t show a significant effect on accumulation of PHA. When Ralstonia eutropha was cultivated in the presence of natural amino acids l-leucine, l-isoleucine, l-phenylalanine, and l-tyrosine in media free of nitrogen, phosphate, and magnesium, the PHA content was high, over 40 % of dry weight. Accumulation of PHA on supplementation with mixed substrates of l-leucine and various other amino acids was investigated in nitrogen-, phosphate-, and magnesium-free medium. Culturing with most mixed substrates led to accumulation of PHA, but some led to low or no PHA yield in spite of high PHA yield when metabolized from l-leucine alone. l-cysteine as a sole carbon source showed a unique feature, in that cell growth was significantly preferred over PHA accumulation. A mixed substrate of l-leucine and l-cysteine provided high PHA accumulation because of the combination of PHA accumulation due to l-leucine and cell growth due to l-cysteine. When glucose was used instead of l-leucine in a mixed substrate with l-cysteine, the PHA content was much lower because l-cysteine acts as an inhibitor of glucose metabolism. These results showed that the precise combination of carbon sources is an important factor in accumulation of PHA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Holmes PA (1985) Phys Technol 16:32

    Article  CAS  Google Scholar 

  2. Doi Y, Tamaki A, Kunioka M, Soga K (1987) J Chem Soc Chem Commun 1635

  3. Doi Y, Tamaki A, Kunioka M, Soga K (1998) Appl Microbiol Biotechnol 28:330

    Article  Google Scholar 

  4. Mitomo H, Morishiota N, Doi Y (1993) Macromolecules 26:5809

    Article  CAS  Google Scholar 

  5. Yoshie N, Menju H, Sato H, Inoue Y (1995) Macromolecules 28:6516

    Article  CAS  Google Scholar 

  6. Yoshie N, Fujiwara M, Kasuya K, Abe H, Doi Y, Inoue Y (1993) Macromolecules 26:5809

    Article  Google Scholar 

  7. Yoshie N, Fujiwara M, Kasuya K, Abe H, Doi Y, Inoue Y (1999) Macromol Chem Phys 200:977

    Article  CAS  Google Scholar 

  8. Mothes G, Schnorpfeil C, Ackmann JU (2007) Eng Life Sci 7:475

    Article  CAS  Google Scholar 

  9. Cavalheiro JMBT, Dealmeida MCMD, Grandfils C, Dafonseca MMR (2009) Process Biochem 44:509

    Article  CAS  Google Scholar 

  10. Zhu C, Nomura CT, Perrotta JA, Stipanovic AJ, Nakas JP (2010) Biotechnol Prog 26:424

    CAS  Google Scholar 

  11. Huijberts GNM, Eggink G, Waard P, Huisman GW, Witholt B (1992) Appl Environ Microbiol 58:536

    CAS  Google Scholar 

  12. Ashby RD, Solaiman DKY, Foglia TA (2005) Biomacromolecules 6:2106

    Article  CAS  Google Scholar 

  13. Cromwick AM, Foglia TA, Lenz RW (1996) Appl Microbiol Biotechnol 46:464

    Article  CAS  Google Scholar 

  14. Ashby RD, Foglia TA (1998) Appl Microbiol Biotechnol 49:431

    Article  CAS  Google Scholar 

  15. Solaiman DKY, Ashby RD, Foglia TA (2001) Appl Microbiol Biotechnol 56:664

    Article  CAS  Google Scholar 

  16. Solaiman DKY, Ashby RD, Foglia TA (2002) Curr Microbiol 44:189

    Article  CAS  Google Scholar 

  17. Miura T, Ishii D, Nakaoki T (2013) J Polym Environ 21:760

  18. Nakamura K, Goto Y, Yoshie N, Inoue Y, Chujo R (1992) Int J Biol Macromol 14:117

    Article  CAS  Google Scholar 

  19. Nakamura K, Goto Y, Yoshie N, Inoue Y (1992) Int J Biol Macromol 14:321

    Article  CAS  Google Scholar 

  20. Fujita M, Nakamura K, Kuroki H, Yoshie N, Inoue Y (1993) Int J Biol Macromol 15:253

    Article  CAS  Google Scholar 

  21. Fujita M, Nakamura K, Ohta O, Kuroki H, Yoshie N, Inoue Y (1994) Macromol Chem Phys 195:3699

    Article  Google Scholar 

  22. Kimura H, Mouri K, Takeishi M, Endo T (2003) Bull Chem Soc Jpn 76:1775

    Article  CAS  Google Scholar 

  23. Anderson AJ, Dawes EA (1990) Microbiol Rev 54:450

    CAS  Google Scholar 

  24. Brandl H, Gross RA, Lenz RW, Fuller RC (1990) Adv Biochem Eng Biotechnol 41:77

    CAS  Google Scholar 

  25. Doi Y (1990) Microbial polyesters. Verlag Chemie, New York

    Google Scholar 

  26. Ryu HW, Hahn SK, Chang YK, Chang HN (1997) Biotehnol Bioeng 55:28

    Article  CAS  Google Scholar 

  27. Hee WR, Sei KH, Yong KC, Ho NC (1997) Biotechnol Bioeng 55:28

    Article  Google Scholar 

  28. Longan S, Min J, Ho NC (2003) Biotechnol Lett 25:1415

    Article  Google Scholar 

  29. Squio CR, Marangoni C, Vecchi CSD, Aragao GMF (2003) Appl Microbiol Biotechnol 61:257

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a Grant-in-Aid for Scientific Research, MEXT (No. 24550179). In addition, financial support from a research fund at Ryukoku University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiko Nakaoki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakamoto, M., Kimura, Y., Ishii, D. et al. Biosynthesis of Poly(3-hydroxyalkanoate) from Amino Acids in Medium with Nitrogen, Phosphate, and Magnesium, or Some Combination of These Nutrients. J Polym Environ 22, 488–493 (2014). https://doi.org/10.1007/s10924-014-0656-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-014-0656-9

Keywords

Navigation