Advertisement

Journal of Polymers and the Environment

, Volume 22, Issue 3, pp 398–408 | Cite as

Study of Thermo-Mechanical and Morphological Behaviour of Biodegradable PLA/PBAT/Layered Silicate Blend Nanocomposites

  • Aswini Kumar Mohapatra
  • Smita Mohanty
  • S. K. Nayak
Original Paper

Abstract

Poly (lactic acid) (PLA) and poly (butylene adipate-co-terephthalate) (PBAT) blend nanocomposites were prepared using melt blending technique followed by compression moulding. The blend nanocomposites were prepared with a variation of PBAT loading along with maleic anhydride and benzoyl peroxide ranging from 5 to 20 wt% along with two different commercially available nanoclays cloisite 93A and cloisite 30B (C30B) at 3 wt% loading. The maleic anhydride and benzoyl peroxide were used during the melt blending of the blend nanocomposites as a compatibilizer and as an accelerator respectively. Maleic anhydride used to enhance the compatibility of the PLA/PBAT blend and as well as the uniform adhesion of the nanoclays with them. The properties and characterizations of PLA matrix and the PLA/PBAT blend nanocomposites have been studied. The tensile strength, % elongation and impact strength increased with the preparation of PLA/PBAT blend nanocomposites as compared with PLA matrix. PLA/PBAT/C30B blend nanocomposites exhibited optimum tensile strength at 15 wt% of PBAT loading. Differential scanning calorimetry and thermogravimetric analysis also showed improved thermal properties as compared with virgin PLA. The wide angle X-ray diffraction studies indicated an increase in d-spacing in PLA/PBAT/C30B blend nanocomposite thus revealing intercalated morphology.

Keywords

PLA PBAT Blend nanocomposites and WAXD 

References

  1. 1.
    Kaczmarek H, Barej K (2008) Polimery 9:631–638Google Scholar
  2. 2.
    Bajer K, Kaczmarek H, Dzwonkowski J, Stasiek A, Oldak D (2007) J Appl Polym Sci 103:2197–2206CrossRefGoogle Scholar
  3. 3.
    Hwang KJ, Park JW, Kim IL, Ha CS, Kim GH (2006) Macromol Res 14:179–186CrossRefGoogle Scholar
  4. 4.
    Lee Y, Chang JB, Kim HK, Park TG (2006) Macromol Res 14:359–364CrossRefGoogle Scholar
  5. 5.
    Sato H, Murakami R, Zhang J, Ozaki Y, Mori K (2006) Macromol Res 14:408–415CrossRefGoogle Scholar
  6. 6.
    Tsuji H, Ikada YJ (1998) J Appl Polym Sci 67:405–415CrossRefGoogle Scholar
  7. 7.
    Perego G, Cella GD, Bastioli C (1996) J Appl Polym Sci 59:37–43CrossRefGoogle Scholar
  8. 8.
    Bledzki A, Fabrycy E (1992) Polimery 37:343Google Scholar
  9. 9.
    Garlotta D (2001) J Polym Env 9:63–84CrossRefGoogle Scholar
  10. 10.
    Foltynowicz Z, Jakubiak P (2002) Polimery 47:769–774Google Scholar
  11. 11.
    Duda A, Penczek S (2003) Polimery 48:16–27Google Scholar
  12. 12.
    Pinkowska E (2006) Polimery 51:836–842Google Scholar
  13. 13.
    Golebiewski J, Gibas E, Malinowski R (2008) Polimery 53:799–807Google Scholar
  14. 14.
    Lim LT, Auras R, Rubino M (2008) Prog Polym Sci 33:820–852CrossRefGoogle Scholar
  15. 15.
    Jiang L, Wolcott MP, Zhang J (2006) Biomacromolecules 7:199–207CrossRefGoogle Scholar
  16. 16.
    Cai H, Dave V, Gross RA, McCarthy SP (1996) J Polym Sci B Polym Phys 34:2701–2708CrossRefGoogle Scholar
  17. 17.
    Schwacch MV, Coudance GJ (1995) J Macromol Sci Pure Appl Chem A 32:787CrossRefGoogle Scholar
  18. 18.
    Pat. USA 0 037 912 (2007)Google Scholar
  19. 19.
    Yamamoto M, Witt U, Skupin G, Beimborn D, Muller RJ (2004) Biopolymer 4:299Google Scholar
  20. 20.
    Herrera R, Franco L, Rodriguez-Galan A, Puiggali J (2002) J Polym Sci A Polym Chem 40:4141CrossRefGoogle Scholar
  21. 21.
    Marten E, Muller RJ, Deckwer WD (2005) Polym Degrad Stab 88:371CrossRefGoogle Scholar
  22. 22.
    Rantze E, Kleeberg I, Witt U, Muller RJ, Deckwer WD (1998) Macromol Symp 130:319CrossRefGoogle Scholar
  23. 23.
    Witt U, Muller RJ, Deckwer WD (1996) Macromol Chem Phys 197:1525CrossRefGoogle Scholar
  24. 24.
    Uwe W, Rolf-Joachim M, Wolf-Dieter D (1995) J Environ Polym Degrad 5:215Google Scholar
  25. 25.
    Witt U, Muller RJ, Deckwer WD (1997) J Environ Polym Degrad 5:81CrossRefGoogle Scholar
  26. 26.
    Liu X, Dever M, Fair N, Benson RX (1997) J Environ Polym Degrad 5:225Google Scholar
  27. 27.
    Grijpma DW, Van Hofslot RDA, Super H, Nijenhuis AJ, Pennings AJ (1994) Polym Eng Sci 34:1674CrossRefGoogle Scholar
  28. 28.
    Zhang L, Goh SH, Lee SY (1998) Polymer 39:4841CrossRefGoogle Scholar
  29. 29.
    Nijenhuis AJ, Colstee E, Grijpma DW, Pennings AJ (1996) Polymer 37:5849CrossRefGoogle Scholar
  30. 30.
    Lee SM, Lee JW (2005) Korea-Aust Rheol J 17:71Google Scholar
  31. 31.
    Lee TH, Boey FYC, Khor KA (1995) Compos Sci Tech 53(3):259–274CrossRefGoogle Scholar
  32. 32.
    Wang H, Sun XZ, Seib P (2001) J Appl Polym Sci 82:1761–1767CrossRefGoogle Scholar
  33. 33.
    Peng ZH, Liu W, Wu Q, Ren J (2010) J Nanomater 2010:1–9Google Scholar
  34. 34.
    Jiang L, Wolcott MP, Zhang J (2006) Biomacromolecules 7(1):199–207CrossRefGoogle Scholar
  35. 35.
    Harada M, Ohya T, Iida K (2007) J Appl Polym Sci 106:1813–1820CrossRefGoogle Scholar
  36. 36.
    Mohanty AK, Parulekar Y, Chhidambarakuemar M, Kositruangchai N, Harte BR (2010) US Patent no 20100076009Google Scholar
  37. 37.
    Zhao P, Liu W, Wu Q, Ren J (2010) J Nanomater 2010:1–8Google Scholar
  38. 38.
    Yeh JT, Tsou CH, Huang CY, Chen KN, Wu CS (2010) J Appl Polym Sci 116:680–687Google Scholar
  39. 39.
    Ray SS, Yamada K, Okamoto M, Ogami A, Ueda K (2003) Chem Mater 15:1456–1465CrossRefGoogle Scholar
  40. 40.
    Ray SS, Yamada K, Okamoto M, Fujimoto Y, Ogami A, Ueda K (2003) Polymer 44:6633–6646CrossRefGoogle Scholar
  41. 41.
    Lee JH, Park TG, Park HS, Lee YK, Yoon SC, Nam JD (2003) Biomaterials 24:2773–2778CrossRefGoogle Scholar
  42. 42.
    Nam JY, Ray SS, Okamoto M (2003) Macromolecular 36:7126–7131CrossRefGoogle Scholar
  43. 43.
    Kumar M, Mohanty S, Nayak SK, Parvaiz MR (2010) Biores Tech 101:8406–8415CrossRefGoogle Scholar
  44. 44.
    Yasuniwa M, Sakamo K, Ono Y, Kawahara W (2008) Polymer 49:1943–1951CrossRefGoogle Scholar
  45. 45.
    Zhou H, Green TB, Joo YL (2006) Polymer 47:7497–7505CrossRefGoogle Scholar
  46. 46.
    Yasuniwa M, Tsubakihara S, Takahashi K (2006) Polymer 47:7554–7563CrossRefGoogle Scholar
  47. 47.
    Vink ETH, Rabago KR, Glassnerb DA, Gruber PR (2003) Polym Degrad Stab 80:403–419CrossRefGoogle Scholar
  48. 48.
    CNR-INFM Poly Lab (2010) Via Risorgimento 35, I-56126 Pisa, ItalyGoogle Scholar
  49. 49.
    Ray SS, Okamoto K, Okamoto M (2003) Macromolecular 36:2355–2367CrossRefGoogle Scholar
  50. 50.
    Ray SS, Okamoto M (2003) Prog Polym Sci 28:1539–1641CrossRefGoogle Scholar
  51. 51.
    Chow W, MohdIshak ZA, Ishiaku US, Kargerkocsis J, Apostolov AA (2004) J Appl Polym Sci 91:175–182CrossRefGoogle Scholar
  52. 52.
    Pouton CW, Akhtar S (1996) Adv Drug Deliv Rev 18:133–162CrossRefGoogle Scholar
  53. 53.
    Shahlari M, Lee S (2008) Scholars’ mine, missouri S&T’s research repository, American Institute of Chemical Engineers Conference ProceedingsGoogle Scholar
  54. 54.
    Kim GM, Michler GH (1998) Polymer 39(23):5699–5703CrossRefGoogle Scholar
  55. 55.
    Bucknall CB, Clayton D, Keast WE (1973) J Mater Sci 8:514–524CrossRefGoogle Scholar
  56. 56.
    Yee AF, Li D, Li XJ (1993) J Mater Sci 28:6392–6398CrossRefGoogle Scholar
  57. 57.
    Wu JS, Yee AF, Mai YW (1994) J Mater Sci 29:4510–4522CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Aswini Kumar Mohapatra
    • 1
  • Smita Mohanty
    • 1
  • S. K. Nayak
    • 1
  1. 1.Laboratory for Advanced Research in Polymeric Materials (LARPM)Central Institute of Plastics Engineering and TechnologyBhubaneswarIndia

Personalised recommendations