Journal of Polymers and the Environment

, Volume 22, Issue 3, pp 289–297 | Cite as

Utilization of Porous Carbons Derived from Coconut Shell and Wood in Natural Rubber

  • Lei Jong
  • Steven C. Peterson
  • Michael A. Jackson
Original Paper


The porous carbons derived from cellulose are renewable and environmentally friendly. Coconut shell and wood derived porous carbons were characterized with elemental analysis, ash content, X-ray diffraction, infrared absorbance, particle size, surface area, and pore volume. The results were compared with carbon black. Uniaxial deformation of natural rubber (NR) composites indicate the composites reinforced with the porous carbon from coconut shell have higher tensile moduli at the same elongation ratio than the composites reinforced with wood carbon. 40 % coconut shell composite showed a fivefold increase in tensile modulus compared to NR. Polymer–filler interactions were studied with frequency dependent shear modulus, swelling experiments and dynamic strain sweep experiments. Both linear and non-linear viscoelastic properties indicate the polymer–filler interactions are similar between coconut shell carbon and wood carbon reinforced composites. The swelling experiments, however, showed that the polymer–filler interaction is greater in the composites reinforced with coconut shell instead of wood carbon.


Porous carbons Natural rubber Mechanical properties Polymer–filler interactions 



The authors would like to thank A. Thompson for energy-dispersive X-ray analysis, A. J. Thomas for ash analysis, G. Gross for X-ray measurements, and A. Maness for elemental analysis.


  1. 1.
    Kang BS, Lee KH, Park HJ, Park YK, Kim JS (2006) J Anal Appl Pyrol 76:32–37Google Scholar
  2. 2.
    Pastor-Villegas J, Pastor-Valle JF, Meneses Rodriguez JM, Garcia Garcia M (2006) J Anal Appl Pyrol 76:103–108Google Scholar
  3. 3.
    Antal MJ, Gronly M (2003) Ind Eng Chem Res 42:1619–1640CrossRefGoogle Scholar
  4. 4.
    Gamage NJW (1987) M.S. Thesis, University of Moratuwa, Sri LankaGoogle Scholar
  5. 5.
    Favier F, Chanzy H, Cavaille JY (1995) Macromolecules 28:6365–6367CrossRefGoogle Scholar
  6. 6.
    Qi Q, Wu Y, Tian M, Liang G, Zhang L, Ma J (2006) Polymer 47:3093–3896Google Scholar
  7. 7.
    Angellier H, Molina-Boisseau S, Lebrun L, Dufresne A (2005) Macromolecules 38(9):3783–3792CrossRefGoogle Scholar
  8. 8.
    Greve HH (2000) Rubber, 2. Natural. In Ullmann’s encyclopaedia of industrial chemistry. Wiley-VCH, WeinheimGoogle Scholar
  9. 9.
    Pearson CH, Cornish K, Rath DJ (2013) Ind Crops Prod 43:506–510CrossRefGoogle Scholar
  10. 10.
    Barnard D, Lewis PM (1988) In: Roberts AD (ed) Natural rubber science and technology. Oxford Unversity Press, Oxford (Chapter 14)Google Scholar
  11. 11.
    Archer BL, Barnard D, Cockbain EG, Dickenson PB, McMullen AI (1963) Chapter 3, structure, composition and biochemistry of Hevea latex. In: Bateman L (ed) The chemistry and physics of rubber-like substances. MacLaren & Sons, LondonGoogle Scholar
  12. 12.
    Wang MJ (1998) Rubber Chem Technol 71:520–589CrossRefGoogle Scholar
  13. 13.
    Leblanc JL (2002) Prog Polym Sci 27:627–687CrossRefGoogle Scholar
  14. 14.
    Lyon F, Burgess K (1985) Carbon black. In: Kroschwitz JI (ed) Encyclopaedia of polymer science and engineering, 2nd edn. Wiley, New YorkGoogle Scholar
  15. 15.
    Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60(2):309–319CrossRefGoogle Scholar
  16. 16.
    Lippens BC, de Boer JH (1965) J Catal 4(3):319–323CrossRefGoogle Scholar
  17. 17.
    Bickford ES, Clemons J, Escallón MM, Goins K, Lu Z, Miyawaki J, Pan W, Rangel-Méndez R, Senger B, Zhang Y, Radovic LR (2004) Carbon 42(8–9):1867–1871CrossRefGoogle Scholar
  18. 18.
    Biscoe J, Warren BE (1942) J Appl Phys 13(6):364–371CrossRefGoogle Scholar
  19. 19.
    Houska CR, Warren BE (1954) J Appl Phys 25(12):1503–1509CrossRefGoogle Scholar
  20. 20.
    Ungar T, Gubicza J, Ribarik G, Pantea C, Zerda TW (2002) Carbon 40:929–937CrossRefGoogle Scholar
  21. 21.
    Misra MK, Ragland KW, Baker AJ (1993) Biomass Bioenergy 4(2):103–116CrossRefGoogle Scholar
  22. 22.
    Trabelsi PA, Albouy P-A, Rault J (2003) Macromolecules 36:9093–9099CrossRefGoogle Scholar
  23. 23.
    Trabelsi PA, Albouy P-A, Rault J (2002) Macromolecules 35:10054–10061CrossRefGoogle Scholar
  24. 24.
    Mark JE, Erman B (1988) Rubberlike elasticity: a molecular primer. Wiley-Interscience, New YorkGoogle Scholar
  25. 25.
    Payne AR (1963) J Appl Poly Sci 7:873–885CrossRefGoogle Scholar
  26. 26.
    Maier PG, Goritz D (1996) Kautsch Gummi Kunstst 49:18–21Google Scholar
  27. 27.
    Meera AP, Said S, Grohens Y, Thomas S (2009) J Phys Chem C 113:17997–18002CrossRefGoogle Scholar
  28. 28.
    Williams ML, Landel RF, Ferry JD (1955) J Am Chem Soc 77:3701–3707CrossRefGoogle Scholar
  29. 29.
    Vilgis TA, Heinrich G, Kluppel M (2009) Reinforcement of polymer nano-composites—Theory, experiments and applications. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  30. 30.
    Stockelhuber KW, Svistkov AS, Pelevin AG, Heinrich G (2011) Macromolecules 44:4366–4381CrossRefGoogle Scholar
  31. 31.
    Rooj S, Das A, Stockelhuber KA, Wang D, Galiatsatos V, Heinrich G (2013) Soft Matter 9:3798–3808CrossRefGoogle Scholar
  32. 32.
    Kraus G (1963) J Appl Polym Sci 7:861–871CrossRefGoogle Scholar
  33. 33.
    Cunneen JI, Russell RM (1969) J Rubber Res Inst Malaya 22(3):300–308Google Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA)  2014

Authors and Affiliations

  • Lei Jong
    • 1
  • Steven C. Peterson
    • 1
  • Michael A. Jackson
    • 2
  1. 1.Plant Polymer Research Unit, Department of AgricultureNational Center for Agricultural Utilization ResearchPeoriaUSA
  2. 2.Renewable Product Technology Research Unit, Department of AgricultureNational Center for Agricultural Utilization ResearchPeoriaUSA

Personalised recommendations