Skip to main content
Log in

Utilization of Porous Carbons Derived from Coconut Shell and Wood in Natural Rubber

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The porous carbons derived from cellulose are renewable and environmentally friendly. Coconut shell and wood derived porous carbons were characterized with elemental analysis, ash content, X-ray diffraction, infrared absorbance, particle size, surface area, and pore volume. The results were compared with carbon black. Uniaxial deformation of natural rubber (NR) composites indicate the composites reinforced with the porous carbon from coconut shell have higher tensile moduli at the same elongation ratio than the composites reinforced with wood carbon. 40 % coconut shell composite showed a fivefold increase in tensile modulus compared to NR. Polymer–filler interactions were studied with frequency dependent shear modulus, swelling experiments and dynamic strain sweep experiments. Both linear and non-linear viscoelastic properties indicate the polymer–filler interactions are similar between coconut shell carbon and wood carbon reinforced composites. The swelling experiments, however, showed that the polymer–filler interaction is greater in the composites reinforced with coconut shell instead of wood carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kang BS, Lee KH, Park HJ, Park YK, Kim JS (2006) J Anal Appl Pyrol 76:32–37

    CAS  Google Scholar 

  2. Pastor-Villegas J, Pastor-Valle JF, Meneses Rodriguez JM, Garcia Garcia M (2006) J Anal Appl Pyrol 76:103–108

    CAS  Google Scholar 

  3. Antal MJ, Gronly M (2003) Ind Eng Chem Res 42:1619–1640

    Article  CAS  Google Scholar 

  4. Gamage NJW (1987) M.S. Thesis, University of Moratuwa, Sri Lanka

  5. Favier F, Chanzy H, Cavaille JY (1995) Macromolecules 28:6365–6367

    Article  CAS  Google Scholar 

  6. Qi Q, Wu Y, Tian M, Liang G, Zhang L, Ma J (2006) Polymer 47:3093–3896

    Google Scholar 

  7. Angellier H, Molina-Boisseau S, Lebrun L, Dufresne A (2005) Macromolecules 38(9):3783–3792

    Article  CAS  Google Scholar 

  8. Greve HH (2000) Rubber, 2. Natural. In Ullmann’s encyclopaedia of industrial chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  9. Pearson CH, Cornish K, Rath DJ (2013) Ind Crops Prod 43:506–510

    Article  CAS  Google Scholar 

  10. Barnard D, Lewis PM (1988) In: Roberts AD (ed) Natural rubber science and technology. Oxford Unversity Press, Oxford (Chapter 14)

    Google Scholar 

  11. Archer BL, Barnard D, Cockbain EG, Dickenson PB, McMullen AI (1963) Chapter 3, structure, composition and biochemistry of Hevea latex. In: Bateman L (ed) The chemistry and physics of rubber-like substances. MacLaren & Sons, London

    Google Scholar 

  12. Wang MJ (1998) Rubber Chem Technol 71:520–589

    Article  CAS  Google Scholar 

  13. Leblanc JL (2002) Prog Polym Sci 27:627–687

    Article  CAS  Google Scholar 

  14. Lyon F, Burgess K (1985) Carbon black. In: Kroschwitz JI (ed) Encyclopaedia of polymer science and engineering, 2nd edn. Wiley, New York

    Google Scholar 

  15. Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60(2):309–319

    Article  CAS  Google Scholar 

  16. Lippens BC, de Boer JH (1965) J Catal 4(3):319–323

    Article  CAS  Google Scholar 

  17. Bickford ES, Clemons J, Escallón MM, Goins K, Lu Z, Miyawaki J, Pan W, Rangel-Méndez R, Senger B, Zhang Y, Radovic LR (2004) Carbon 42(8–9):1867–1871

    Article  CAS  Google Scholar 

  18. Biscoe J, Warren BE (1942) J Appl Phys 13(6):364–371

    Article  CAS  Google Scholar 

  19. Houska CR, Warren BE (1954) J Appl Phys 25(12):1503–1509

    Article  CAS  Google Scholar 

  20. Ungar T, Gubicza J, Ribarik G, Pantea C, Zerda TW (2002) Carbon 40:929–937

    Article  CAS  Google Scholar 

  21. Misra MK, Ragland KW, Baker AJ (1993) Biomass Bioenergy 4(2):103–116

    Article  CAS  Google Scholar 

  22. Trabelsi PA, Albouy P-A, Rault J (2003) Macromolecules 36:9093–9099

    Article  CAS  Google Scholar 

  23. Trabelsi PA, Albouy P-A, Rault J (2002) Macromolecules 35:10054–10061

    Article  CAS  Google Scholar 

  24. Mark JE, Erman B (1988) Rubberlike elasticity: a molecular primer. Wiley-Interscience, New York

    Google Scholar 

  25. Payne AR (1963) J Appl Poly Sci 7:873–885

    Article  CAS  Google Scholar 

  26. Maier PG, Goritz D (1996) Kautsch Gummi Kunstst 49:18–21

    CAS  Google Scholar 

  27. Meera AP, Said S, Grohens Y, Thomas S (2009) J Phys Chem C 113:17997–18002

    Article  CAS  Google Scholar 

  28. Williams ML, Landel RF, Ferry JD (1955) J Am Chem Soc 77:3701–3707

    Article  CAS  Google Scholar 

  29. Vilgis TA, Heinrich G, Kluppel M (2009) Reinforcement of polymer nano-composites—Theory, experiments and applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  30. Stockelhuber KW, Svistkov AS, Pelevin AG, Heinrich G (2011) Macromolecules 44:4366–4381

    Article  Google Scholar 

  31. Rooj S, Das A, Stockelhuber KA, Wang D, Galiatsatos V, Heinrich G (2013) Soft Matter 9:3798–3808

    Article  CAS  Google Scholar 

  32. Kraus G (1963) J Appl Polym Sci 7:861–871

    Article  CAS  Google Scholar 

  33. Cunneen JI, Russell RM (1969) J Rubber Res Inst Malaya 22(3):300–308

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank A. Thompson for energy-dispersive X-ray analysis, A. J. Thomas for ash analysis, G. Gross for X-ray measurements, and A. Maness for elemental analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Jong.

Additional information

Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jong, L., Peterson, S.C. & Jackson, M.A. Utilization of Porous Carbons Derived from Coconut Shell and Wood in Natural Rubber. J Polym Environ 22, 289–297 (2014). https://doi.org/10.1007/s10924-013-0637-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-013-0637-4

Keywords

Navigation