Journal of Polymers and the Environment

, Volume 21, Issue 4, pp 1009–1015 | Cite as

Municipal Wastes Treatment and Production of Polyhydroxyalkanoate by Modified Two-Stage Batch Reactor

  • Kanokphorn Sangkharak
  • Poonsuk Prasertsan
Original Paper


The municipal wastes were utilized as substrate for polyhydroxyalkanoate (PHA) using two strains of Bacillus licheniformis (PHAs-007, wild type and M2-12, mutant). Municipal wastes were subjected to separate wastewater and biosolid. Municipal biosolid was digested by anaerobic bacteria thereafter only the supernatant with soluble organic compounds was subjected into the PHA-producing reactor containing municipal wastewater. The mutant strain M2-12 gave the highest value of biomass (42.0 ± 2.0 g/L) and PHA concentration (37.4 ± 1.0 g/L with 88.9 % of dry cell weight, DCW) and reduced 76.5 % of soluble chemical oxygen demand after 60 h of cultivation. The value of pH, biochemical oxygen demand and total solid of the reclaimed wastewater after PHA recovery was 7.1, 20 and 97 mg/L, respectively. Moreover, the polymers produced by both strains of B. licheniformis were characterized. The resultant polymer from B. licheniformis PHAs-007 and M2-12 cultivated in the PHA-producing reactor was identified as poly-3-hydroxybutyrate-co-3-hydroxyvalerate [P(3HB-co-3HV)] and poly-3-hydroxybutyrate-co-4-hydroxybutyrate [P(3HB-co-4HB)], respectively. The results suggesting that the production of PHA by municipal wastes is feasible thus the PHA production stage can be integrated in waste treatment to produce PHA and treated municipal wastes at the same time.


Anaerobic digestion Biosolid PHA Polyhydroxyalkanoate Waste treatment 



The authors would like to thank Thailand Research Fund (TRF) Grant for New Researcher (Project Number MRG 5380016) and the Research and Development Institute Thaksin University for financial support.


  1. 1.
    Chiemchaisri C, Juanga JP, Visvanathan C (2007) Environ Monit Assess 135:13CrossRefGoogle Scholar
  2. 2.
    Anastas PT, Zimmerman JB (2003) Environ Sci Technol 37:94CrossRefGoogle Scholar
  3. 3.
    Vigneswaran S, Sundaravadivel M (2004) Recycle and reuse of domestic wastewater, Encyclopedia of Life Support Systems (EOLSS). Eolss Publishers, OxfordGoogle Scholar
  4. 4.
    Ceyhan N, Ozdemir G (2011) Afr J Microbiol Res 5:690Google Scholar
  5. 5.
    Beccari M, Bertin L, Dionisi D, Fava F, Lampis S, Majone M, Valentino F, Vallini G, Villano M (2009) J Chem Technol Biot 84:901CrossRefGoogle Scholar
  6. 6.
    Coats ER, VandeVoort KE, Darby JL, Loge F (2011) J Environ Eng 137:46CrossRefGoogle Scholar
  7. 7.
    Chee JY, Tan YF, Samian MR, Sudesh K (2010) J Polym Environ 18:584CrossRefGoogle Scholar
  8. 8.
    Sangkharak K, Prasertsan P (2008) Electron J Biotechnol 11:1CrossRefGoogle Scholar
  9. 9.
    Chaudhry WN, Jamil N, Ali I, Ayaz MH, Hasnain S (2010) Ann Microbiol 61:623CrossRefGoogle Scholar
  10. 10.
    Mumtaz T, Yahaya NA, Abd-Aziz S, Rahman NA, Yee PL, Shirai Y, Hassan MA (2010) J Clean Prod 18:1393CrossRefGoogle Scholar
  11. 11.
    Madison LL, Huisman GW (1999) Microbiol Mol Biol R 63:21Google Scholar
  12. 12.
    Akiyama M, Doi Y (2003) Polym Degrad Stab 80:183CrossRefGoogle Scholar
  13. 13.
    Coats ER, Loge FJ, Wolcott MP, Englund K, McDonald AG (2007) Water Environ Res 79:2396CrossRefGoogle Scholar
  14. 14.
    Fonseca GG (2008) Waste Manage Res 26:546CrossRefGoogle Scholar
  15. 15.
    Lee S, Yu J (1997) Resour Conserv Recycl 19:151CrossRefGoogle Scholar
  16. 16.
    Sangkharak K, Prasertsan P (2013) Biotechnol Bioproc E 18:272Google Scholar
  17. 17.
    Shimizu H, Shioya S, Suga KI (1990) Eur J Appl Microbiol 7:1Google Scholar
  18. 18.
    Sangkharak K, Prasertsan P (2012) J Gen Appl Microbiol 58:173CrossRefGoogle Scholar
  19. 19.
    Inoue Y, Yoshie N (1992) Prog Polym Sci 17:571CrossRefGoogle Scholar
  20. 20.
    Li SY, Dong CL, Wang SY, Ye HM, Chen GQ (2011) Appl Microbiol Biot 90:659CrossRefGoogle Scholar
  21. 21.
    APHA (1995) Standard method for the examination of water and wastewater federation, 19th edn. American Public Health Association, Washington, DCGoogle Scholar
  22. 22.
    Barnard JL, Scruggs CE (2003) Water Environ Technol 15:27Google Scholar
  23. 23.
    Ashraf H, Haq IU, Qadeer MA, Iqbal J (2001) Pak J Bot 33:518–525Google Scholar
  24. 24.
    Lorrungruang C, Martthong J, Sasaki K, Noparatnaraporn N (2006) J Biosci Bioeng 2:128CrossRefGoogle Scholar
  25. 25.
    Reddy CSK, Ghai R, Rashmi, Kalia VC (2003) Bioresour Technol 87:137–146Google Scholar
  26. 26.
    Apetroaie-Constantin C, Mikkola R, Andersson MA, Teplova V, Suominen I, Johansson T, Salkinoja-Salonen M (2009) J Appl Microbiol 106:1976CrossRefGoogle Scholar
  27. 27.
    Singh M, Patel SKS, Kalia VC (2009) Microb Cell Fact 8:38CrossRefGoogle Scholar
  28. 28.
    Doi Y (1990) Microbial polyester. VCH publishers, Inc., New YorkGoogle Scholar
  29. 29.
    Kanchanasuta S, Boonyawanich S (2011) J Appl Sci 10:18Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.COE for Sustainable Energy and Environment, Department of Chemistry, Faculty of ScienceThaksin UniversityPhatthalungThailand
  2. 2.Department of Industrial Biotechnology, Faculty of Agro-IndustryPrince of Songkla UniversitySongkhlaThailand

Personalised recommendations