Advertisement

Journal of Polymers and the Environment

, Volume 21, Issue 4, pp 1072–1082 | Cite as

New Non-food-Based Composites of Acorn Nutlet and Polycaprolactone: Preparation and Characterization Evaluation

  • Shouhai Li
  • Chunpeng Wang
  • Fuxiang Chu
  • Jianling Xia
  • Yuzhi Xu
Original Paper

Abstract

Two dissimilar renewable resource-based thermoplastic acorn nutlet (TPAN) materials were prepared via twin-screw extrusion with the aid of glycerol or monoethanolamine as plasticizers, and then two TPAN/polycaprolactone (PCL) composites with different plasticized systems were prepared. Mechanical test showed that glycerol-based composites had excellent tensile properties, and at a PCL content of 50 wt%, their tensile strength and elongation at break reached 14.4 MPa and 1,361 %, respectively. The micro-morphologic investigation of liquid-nitrogen brittle fracture surface indicated certain interface adhesion between glycerol-based thermoplastic acorn nutlet (GTPAN) and PCL. Dynamic mechanical thermal analysis , differential scanning calorimetry and thermogravimetric analysis demonstrated that the weight ratios of TPAN in composites significantly affected the crystallinity, glass transition temperature (Tg), melting temperature (Tm) and thermal stability of composites. Soil burial degradation analysis displayed that all composites had excellent biodegradability. These results demonstrated that GTPAN/PCL composites had superior mechanical and biodegradable properties, enough to partially replace the conventional thermoplastic plastics.

Keywords

Acorn nutlet Polycaprolactone Twin-screw extrusion method Composites Biodegradable properties 

Notes

Acknowledgments

This project was supported by the National Technology R&D Program of China, Grant Number: 2012BAD32B01.

References

  1. 1.
    Connors P, Smith K (1980) Mar Pollut Bull 13:18CrossRefGoogle Scholar
  2. 2.
    Ruan XY, Zhou DC, He YB, Chen WM (1996) J Mater Process Tech 59:205CrossRefGoogle Scholar
  3. 3.
    Vivian CMG, Murray LA (2001) Encycl Ocean Sci 4:2236CrossRefGoogle Scholar
  4. 4.
    Avella M, Bogoeva-Gaceva G, Bularovska A, Errico ME, Gentile G, Grozdanov A (2008) J Appl Polym Sci 108:3542CrossRefGoogle Scholar
  5. 5.
    Gonçalves SPC, Martins-Franchetti SM, Chinaglia DL (2009) J Polym Environ 17:280CrossRefGoogle Scholar
  6. 6.
    He Y, Qian ZY, Zhang HL, Liu XB (2004) Colloid Polym Sci 282:972CrossRefGoogle Scholar
  7. 7.
    Wang SG, Nishide H, Tsuchida E (1999) Polym Adv Technol 10:282CrossRefGoogle Scholar
  8. 8.
    Anuradha M, Kumar VG (1999) Indian J Chem 38:525Google Scholar
  9. 9.
    Funabashi M, Ninomiya F, Kunioka M (2007) J Polym Environ 15:7CrossRefGoogle Scholar
  10. 10.
    Aamer AS, Fariha H, Abdul H, Safia A (2008) Biotechnol Adv 26:246Google Scholar
  11. 11.
    Islam MS, Pickering KL, Foreman NJ (2010) Polym Degrad Stab 95:59CrossRefGoogle Scholar
  12. 12.
    Ochi S (2008) Mech Mater 40:446CrossRefGoogle Scholar
  13. 13.
    Teramoto N, Urata K, Ozawa K, Shibata M (2004) Polym Degrad Stab 86:401CrossRefGoogle Scholar
  14. 14.
    Leible L (1996) Starch/Stärke 48:121CrossRefGoogle Scholar
  15. 15.
    Fringant C, Rinaudo M, Grenoble N, Gontard S, Guilbert S (1998) Starch/Stärke 50:292CrossRefGoogle Scholar
  16. 16.
    Mathew AP, Dufresne A (2002) Biomacromolecules 3:1101CrossRefGoogle Scholar
  17. 17.
    Van der Burg MC, Van der Woude ME, Janssen LPBM, Vinyl J (1996) Addit Technol 2:170CrossRefGoogle Scholar
  18. 18.
    Koenig MF, Huang SJ (1995) Polym. 36:1877CrossRefGoogle Scholar
  19. 19.
    Fang JM, Fowler PA, Tomkinson J, Hill CAS (2002) Carbohyd Polym 50:429CrossRefGoogle Scholar
  20. 20.
    Bastioli C, Cerutti A, Guanella I, Romano GC, Tosin MPJ (1995) Environ Polym Degrad 3:81CrossRefGoogle Scholar
  21. 21.
    Crescenzi V, Mancini G, Calzolari G, Borri C (1972) Eur Polym J 8:449CrossRefGoogle Scholar
  22. 22.
    Grigat E, Koch R, Timmermann R (1998) Polym Degrad Stab 59:223CrossRefGoogle Scholar
  23. 23.
    Kotnis MA, O’Brien GS, Willett JL (1995) J Environ Polym Degrad 3:97CrossRefGoogle Scholar
  24. 24.
    Shogren RL (1995) J Environ Polym Degrad 3:75CrossRefGoogle Scholar
  25. 25.
    Oksman K, Skrifvars M, Selin J-F (2003) Compos Sci Technol 63:1317CrossRefGoogle Scholar
  26. 26.
    Yukata T, Akira I, Masatoshi K (1990) Polym Mater Sci Eng 63:742Google Scholar
  27. 27.
    Tokiwa Y, Suzuki T (1977) Nature (London) 270:76CrossRefGoogle Scholar
  28. 28.
    Schlemmer D, Sales MJA, Resck IS (2009) Carbohyd Polym 75:58CrossRefGoogle Scholar
  29. 29.
    di Franco CR, Cyras VP, Busalmen JP, Ruseckaite RA, Vázquez A (2004) Polym Degrad Stab 86:95CrossRefGoogle Scholar
  30. 30.
    Zheng P, Chang PR, Yu J, Ma X (2009) Polymer 78:296Google Scholar
  31. 31.
    Ioannis A, Costas GB (1999) Carbohyd Polym 38:47CrossRefGoogle Scholar
  32. 32.
    Duquesne E, Rutot D, Degée P, Dubois P (2001) Macromol Symp 175:33CrossRefGoogle Scholar
  33. 33.
    Averous L, Moro L, Dole P, Fringant C (2000) Polymer 41:4157CrossRefGoogle Scholar
  34. 34.
    Ishiaku US, Pang KW, Lee WS, mohd. Ishak ZA (2002) Eur. Polym. J. 38:393CrossRefGoogle Scholar
  35. 35.
    Gáspár M, Benkö Z, Dogossy G, Réczey K, Czigány T (2005) Polym Degrad Stab 90:563CrossRefGoogle Scholar
  36. 36.
    Mali S, Sakanaka LS, Yamashita F, Grossmann MVE (2005) Carbohyd Polym 60:283CrossRefGoogle Scholar
  37. 37.
    Matzinos P, Tserki V, Kontoyiannis A, Panayiotou C (2002) Polym Degrad Stab 77:17CrossRefGoogle Scholar
  38. 38.
    Schlemmer D, de Oliveira ER, Araújo Sales MJ (2007) J Therm Anal Calorim 87:635CrossRefGoogle Scholar
  39. 39.
    Schweigman C, Bakker EJ, Snijders TAB (1990) Eur J Oper Res 49:211CrossRefGoogle Scholar
  40. 40.
    Zezza A, Tasciotti L (2010) Food Policy 35:265CrossRefGoogle Scholar
  41. 41.
    Agcaoili-Sombilla M, Rosegrant MW, Asian J (1996) Economic 7:265Google Scholar
  42. 42.
    Stentiford GD (2012) J Invert Path 110:139CrossRefGoogle Scholar
  43. 43.
    Eggersdorfer M, Meyer J, Eckes P (1992) FEMS Microbiol Lett 103:355CrossRefGoogle Scholar
  44. 44.
    Becker J, Wittmann C (2012) Curr Opin Biotechnol 23:631CrossRefGoogle Scholar
  45. 45.
    Xie BX, Xie T (2002) J Cent South For Univ 22:36Google Scholar
  46. 46.
    Lee HA, Kim NH, Katsuyoshi N (1998) Thermochim Acta 322:39CrossRefGoogle Scholar
  47. 47.
    Zhu MX, Dong Q, Chen DJ (2005) Chem World 46:665Google Scholar
  48. 48.
    Kweon DK, Cha DS, Park HJ, Lim ST (2000) J Appl Polym Sci 78:986CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Shouhai Li
    • 1
    • 2
    • 3
    • 4
    • 5
  • Chunpeng Wang
    • 1
    • 2
    • 3
    • 4
    • 5
  • Fuxiang Chu
    • 1
    • 2
    • 3
    • 4
    • 5
  • Jianling Xia
    • 1
    • 2
    • 3
    • 4
    • 5
  • Yuzhi Xu
    • 1
    • 2
    • 3
    • 4
    • 5
  1. 1.Institute of Chemical Industry of Forestry ProductsCAFNanjingChina
  2. 2.Key Laboratory of Biomass Energy and MaterialNanjingChina
  3. 3.National Engineering Laboratory for Biomass Chemical UtilizationNanjingChina
  4. 4.Key and Laboratory on Forest Chemical EngineeringSFANanjingChina
  5. 5.Institute of Forest New TechnologyCAFBeijingChina

Personalised recommendations