Advertisement

Journal of Polymers and the Environment

, Volume 21, Issue 3, pp 826–832 | Cite as

Production of 3-Hydroxybutyrate Monomers by Pseudomonas mendocina DS04-T Biodegraded Polyhydroxybutyrate

  • Lin-lin Li
  • Jia Gao
  • Hu-sheng Jiang
  • Zhan-yong Wang
Original Paper

Abstract

The production conditions of 3-hydroxybutyrate (3-HB) monomers in submerged culture using Pseudomonas mendocina DS04-T as a degrading strain were optimized. The optimal culture medium constituents (w/v) were determined as follows: 0.5 % PHB, 0.15 % NH4Cl, 1.2 % Na2HPO4·12H2O, 0.3 % KH2PO4, 0.05 % MgSO4·7H2O, and 0.0005 % CaCl2·2H2O. The optimum parameters for liquid fermentation were as follows: temperature, 30 °C; inoculum content, 1.0 %; cultivation time, 18 h; initial pH, 7.0; volume of medium, 100 mL; and rotary speed, 180 rpm. Yield of 3-HB monomer and PHB depolymerase activity at optimized conditions were (56.4 ± 0.8) % and (57.4 ± 2.6) U/mL, respectively. The 3-HB monomer concentration obtained under optimized conditions was 1.5 times that obtained under the basic culture medium and initial conditions.

Keywords

3-hydroxybutyrate Polyhydroxybutyrate Biodegradation Optimization 

Notes

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant No. 31100099), Science Project of Liaoning Province Education Office (L2011060) and Science Foundation of Liaoning Shihua University (No. 2011XJJ-025).

References

  1. 1.
    Lenz RW, Marchessault RH (2005) Biomacromolecules 6:1–8CrossRefGoogle Scholar
  2. 2.
    Hazer B, Steinbüchel A (2007) Appl Microbiol Biotechnol 74:1–12CrossRefGoogle Scholar
  3. 3.
    Ueda H, Tabata Y (2003) Adv Drug Deliv Rev 55:501–518CrossRefGoogle Scholar
  4. 4.
    Chen GQ (2009) Chem Soc Rev 38:2434–2446CrossRefGoogle Scholar
  5. 5.
    Cousley RR (2009) J Clin Orthod 43:403–407Google Scholar
  6. 6.
    Xu XY, Li XT, Peng SW, Xiao JF, Liu C, Fang G, Chen KC, Chen GQ (2010) Biomaterials 31:3967–3975CrossRefGoogle Scholar
  7. 7.
    Tokiwa Y, Calabia BP (2004) Biotechnol Lett 26:1181–1189CrossRefGoogle Scholar
  8. 8.
    Kim DY, Kim HW, Chung MG, Rhee YH (2007) J Microbiol 45:87–97Google Scholar
  9. 9.
    Luckachan GE, Pillai CKS (2011) J Polym Environ 19:637–676CrossRefGoogle Scholar
  10. 10.
    Jendrossek D, Handrick R (2002) Annu Rev Microbiol 56:403–432CrossRefGoogle Scholar
  11. 11.
    Chen GQ, Wu Q (2005) Appl Microbiol Biotechnol 67:592–599CrossRefGoogle Scholar
  12. 12.
    de Roo G, Kellerhals MB, Ren Q, Witholt B, Kessler B (2002) Biotechnol Bioeng 77:717–722CrossRefGoogle Scholar
  13. 13.
    Noyori R, Kitamura M, Ohkuma T (2004) Proc Natl Acad Sci USA 101:5356–5362CrossRefGoogle Scholar
  14. 14.
    Wang Z, Zhao C, Pierce ME, Fortunak JM (1999) Tetrahedron Asymmetry 10:225–228CrossRefGoogle Scholar
  15. 15.
    Nakahata M, Imaida M, Ozaki H, Harada T, Tai A (1982) Bull Chem Soc Jpn 55:2186–2189CrossRefGoogle Scholar
  16. 16.
    Brown HC, Ramachandran PV (1991) Pure Appl Chem 63:307–316CrossRefGoogle Scholar
  17. 17.
    Ikunaka M (2003) Chem Eur J 9:379–388CrossRefGoogle Scholar
  18. 18.
    Lee SY, Lee Y, Wang FL (1999) Biotechnol Bioeng 65:363–368CrossRefGoogle Scholar
  19. 19.
    Wang ZY, Wang Y, Guo ZQ, Li F, Chen S (2011) Polym Eng Sci 51:454–459CrossRefGoogle Scholar
  20. 20.
    Zhou HL, Wang ZY, Chen S, Liu DB, Xia HM (2009) Polym-Plast Technol 48:58–63CrossRefGoogle Scholar
  21. 21.
    Gao D, Maehara A, Yamane T, Ueda S (2001) FEMS Microbiol Lett 196:159–164CrossRefGoogle Scholar
  22. 22.
    Shirakura Y, Fukui T, Saito T, Okamoto Y, Narikawa T, Koide K, Tomita K, Takemasa T, Masamune S (1986) Biochem Biophys Acta 880:46–53CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Lin-lin Li
    • 1
  • Jia Gao
    • 1
  • Hu-sheng Jiang
    • 1
  • Zhan-yong Wang
    • 1
  1. 1.School of Environmental and Biological EngineeringLiaoning Shihua UniversityFushunPeople’s Republic of China

Personalised recommendations