Skip to main content

Interfaces in Cross-Linked and Grafted Bacterial Cellulose/Poly(Lactic Acid) Resin Composites

Abstract

This article presents approaches to maximize the mechanical performance of bacterial cellulose/poly(lactic acid) composites through chemical modification of the interface. This is achieved by both cross-linking the layered bacterial cellulose structure and by grafting maleic anhydride to the matrix material. Unmodified and glyoxalized bacterial cellulose (BC) networks have been embedded in poly(lactic acid) (PLA) resin and then in maleated resin using a compression molding method. The effect of these chemical modifications on the physical properties of these composites is reported. The tensile properties of the composites showed that Young’s moduli can be increased significantly when both BC networks and PLA were chemically modified. Interface consolidation between layers in BC networks has been achieved by glyoxalization. The effect of these modifications on both stress-transfer between the fibers and between the matrix and the fibers was quantified using Raman spectroscopy. Two competitive deformation mechanisms are identified; namely the mobility between BC layers, and between BC and PLA. The coupling strength of these interfaces could play a key role for optimization of these composites’ mechanical properties.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Eichhorn SJ, Gandini A (2010) MRS Bull 3:187–190

    Article  Google Scholar 

  2. 2.

    Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) J Mater Sci 1:1–33

    Article  Google Scholar 

  3. 3.

    Gandini A (2008) Macromolecules 24:9491–9504

    Article  Google Scholar 

  4. 4.

    Platel RH, Hodgson LM, Williams CK (2008) Polym Rev 1:11–63

    Article  Google Scholar 

  5. 5.

    Auras R, Harte B, Selke S (2004) Macromol Biosci 9:835–864

    Article  Google Scholar 

  6. 6.

    Oksman K, Skrifvars M, Selin JF (2003) Compos Sci Technol 9:1317–1324

    Article  Google Scholar 

  7. 7.

    Ray SS, Okamoto M (2003) Macromol Rapid Commun 14:815–840

    Article  Google Scholar 

  8. 8.

    Yang KK, Wang XL, Wang YZ (2007) J Ind Eng Chem 4:485–500

    Google Scholar 

  9. 9.

    Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Compos Sci Technol 15:2776–2784

    Article  Google Scholar 

  10. 10.

    O’Sullivan AC (1997) Cellulose 3:173–207

    Article  Google Scholar 

  11. 11.

    Ranby BG (1952) Ark Kemi 13:241–248

    Google Scholar 

  12. 12.

    Brown AJ (1886) J Chem Soc, 432–439

  13. 13.

    Eichhorn SJ, Baillie CA, Zafeiropoulos N, Mwaikambo LY, Ansell MP, Dufresne A, Entwistle KM, Herrera-Franco PJ, Escamilla GC, Groom L, Hughes M, Hill C, Rials TG, Wild PM (2001) J Mater Sci 9:2107–2131

    Article  Google Scholar 

  14. 14.

    Nishino T, Takano K, Nakamae K (1995) J Polym Sci, Part B: Polym Phys 11:1647–1651

    Article  Google Scholar 

  15. 15.

    Sakurada I, Nukushina Y, Ito T (1962) J Polym Sci 165:651–660

    Article  Google Scholar 

  16. 16.

    Guhados G, Wan W, Hutter JL (2005) Langmuir 14:6642–6646

    Article  Google Scholar 

  17. 17.

    Hsieh YC, Yano H, Nogi M, Eichhorn S (2008) Cellulose 4:507–513

    Article  Google Scholar 

  18. 18.

    Gea S, Bilotti E, Reynolds CT, Soykeabkeaw N, Peijs T (2010) Mater Lett 8:901–904

    Article  Google Scholar 

  19. 19.

    Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Adv Mater 2:153–155

    Article  Google Scholar 

  20. 20.

    Lee K-Y, Blaker JJ, Bismarck A (2009) Compos Sci Technol 15–16:2724–2733

    Article  Google Scholar 

  21. 21.

    Kim Y, Jung R, Kim H-S, Jin H-J (2009) Curr Appl Phys 1(Supplement 1):S69–S71

    Article  Google Scholar 

  22. 22.

    Li ZQ, Zhou XD, Pei CH (2010) Polym Plast Technol Eng 2:141–146

    Article  Google Scholar 

  23. 23.

    Gindl W, Keckes J (2004) Compos Sci Technol 15:2407–2413

    Article  Google Scholar 

  24. 24.

    Schramm M, Hestrin S (1954) J Gen Microbiol 1:123–129

    Google Scholar 

  25. 25.

    Watanabe K, Tabuchi M, Morinaga Y, Yoshinaga F (1998) Cellulose 3:187–200

    Article  Google Scholar 

  26. 26.

    Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S, Nishi Y, Uryu M (1989) J Mater Sci 9:3141–3145

    Article  Google Scholar 

  27. 27.

    Gea S, Reynolds CT, Roohpour N, Wirjosentono B, Soykeabkaew N, Bilotti E, Peijs T (2011) Bioresour Technol 19:9105–9110

    Article  Google Scholar 

  28. 28.

    Quero F, Nogi M, Yano H, Abdulsalami K, Holmes SM, Sakakini BH, Eichhorn SJ (2010) ACS Appl Mater Interfaces 1:321–330

    Article  Google Scholar 

  29. 29.

    Quero F, Nogi M, Lee K-Y, Poel GV, Bismarck A, Mantalaris A, Yano H, Eichhorn SJ (2011) ACS Appl Mater Interfaces 2:490–499

    Article  Google Scholar 

  30. 30.

    Hestrin S, Schramm M (1954) Biochem J 2:345–352

    Google Scholar 

  31. 31.

    Marquardt DW (1963) SIAM J Appl Math 2:431–441

    Google Scholar 

  32. 32.

    Nyambo C, Mohanty AK, Misra M (2011) Macromol Mater Eng 8:710–718

    Article  Google Scholar 

  33. 33.

    Carlson D, Dubois P, Nie L, Narayan R (1998) Polym Eng Sci 2:311–321

    Article  Google Scholar 

  34. 34.

    Carlson D, Nie L, Narayan R, Dubois P (1999) J Appl Polym Sci 4:477–485

    Article  Google Scholar 

  35. 35.

    Thompson MR, Tzoganakis C, Rempel GL (1998) Polymer 2:327–334

    Article  Google Scholar 

  36. 36.

    Thompson MR, Tzoganakis C, Rempel GL (1999) J Appl Polym Sci 3:503–516

    Article  Google Scholar 

  37. 37.

    Vicente A, Pereira S, Nunes T, Ribeiro M (2011) J Polym Res 4:527–532

    Article  Google Scholar 

  38. 38.

    Pretsch E, Bühlmann P, Affolter C (2000) Structure determination of organic compounds. Springer-Verlag, Berlin

    Google Scholar 

  39. 39.

    Wiley JH, Atalla RH (1987) Carbohydr Res, 113–129

  40. 40.

    Gierlinger N, Schwanninger M, Reinecke A, Burgert I (2006) Biomacromolecules 7:2077–2081

    Article  CAS  Google Scholar 

  41. 41.

    Edwards HGM, Farwell DW, Webster D (1997) Spectrochim Acta Part A Mol Biomol Spectrosc 13:2383–2392

    Article  Google Scholar 

  42. 42.

    Rusli R, Eichhorn SJ (2008) Appl Phys Lett 3:033111–033113

    Article  Google Scholar 

  43. 43.

    Šturcová A, Davies GR, Eichhorn SJ (2005) Biomacromolecules 2:1055–1061

    Article  Google Scholar 

  44. 44.

    Eichhorn SJ, Sirichaisit J, Young RJ (2001) J Mater Sci 13:3129–3135

    Article  Google Scholar 

  45. 45.

    Eichhorn SJ, Young RJ (2003) Compos Sci Technol 9:1225–1230

    Article  Google Scholar 

  46. 46.

    Huda MS, Drzal LT, Misra M, Mohanty AK (2006) J Appl Polym Sci 5:4856–4869

    Article  Google Scholar 

Download references

Acknowledgments

Two authors (FQ and SJE) would like to thank the EPSRC for funding a PhD studentship (to FQ) under Grant GR/F028946.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Eichhorn.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Quero, F., Eichhorn, S.J., Nogi, M. et al. Interfaces in Cross-Linked and Grafted Bacterial Cellulose/Poly(Lactic Acid) Resin Composites. J Polym Environ 20, 916–925 (2012). https://doi.org/10.1007/s10924-012-0487-5

Download citation

Keywords

  • Raman spectroscopy
  • Stress-transfer
  • Bacterial cellulose
  • Interface
  • Biocomposite