Advertisement

Journal of Polymers and the Environment

, Volume 20, Issue 4, pp 916–925 | Cite as

Interfaces in Cross-Linked and Grafted Bacterial Cellulose/Poly(Lactic Acid) Resin Composites

  • Franck Quero
  • Stephen J. Eichhorn
  • Masaya Nogi
  • Hiroyuki Yano
  • Koon-Yang Lee
  • Alexander Bismarck
Original Paper

Abstract

This article presents approaches to maximize the mechanical performance of bacterial cellulose/poly(lactic acid) composites through chemical modification of the interface. This is achieved by both cross-linking the layered bacterial cellulose structure and by grafting maleic anhydride to the matrix material. Unmodified and glyoxalized bacterial cellulose (BC) networks have been embedded in poly(lactic acid) (PLA) resin and then in maleated resin using a compression molding method. The effect of these chemical modifications on the physical properties of these composites is reported. The tensile properties of the composites showed that Young’s moduli can be increased significantly when both BC networks and PLA were chemically modified. Interface consolidation between layers in BC networks has been achieved by glyoxalization. The effect of these modifications on both stress-transfer between the fibers and between the matrix and the fibers was quantified using Raman spectroscopy. Two competitive deformation mechanisms are identified; namely the mobility between BC layers, and between BC and PLA. The coupling strength of these interfaces could play a key role for optimization of these composites’ mechanical properties.

Keywords

Raman spectroscopy Stress-transfer Bacterial cellulose Interface Biocomposite 

Notes

Acknowledgments

Two authors (FQ and SJE) would like to thank the EPSRC for funding a PhD studentship (to FQ) under Grant GR/F028946.

References

  1. 1.
    Eichhorn SJ, Gandini A (2010) MRS Bull 3:187–190CrossRefGoogle Scholar
  2. 2.
    Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) J Mater Sci 1:1–33CrossRefGoogle Scholar
  3. 3.
    Gandini A (2008) Macromolecules 24:9491–9504CrossRefGoogle Scholar
  4. 4.
    Platel RH, Hodgson LM, Williams CK (2008) Polym Rev 1:11–63CrossRefGoogle Scholar
  5. 5.
    Auras R, Harte B, Selke S (2004) Macromol Biosci 9:835–864CrossRefGoogle Scholar
  6. 6.
    Oksman K, Skrifvars M, Selin JF (2003) Compos Sci Technol 9:1317–1324CrossRefGoogle Scholar
  7. 7.
    Ray SS, Okamoto M (2003) Macromol Rapid Commun 14:815–840CrossRefGoogle Scholar
  8. 8.
    Yang KK, Wang XL, Wang YZ (2007) J Ind Eng Chem 4:485–500Google Scholar
  9. 9.
    Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Compos Sci Technol 15:2776–2784CrossRefGoogle Scholar
  10. 10.
    O’Sullivan AC (1997) Cellulose 3:173–207CrossRefGoogle Scholar
  11. 11.
    Ranby BG (1952) Ark Kemi 13:241–248Google Scholar
  12. 12.
    Brown AJ (1886) J Chem Soc, 432–439Google Scholar
  13. 13.
    Eichhorn SJ, Baillie CA, Zafeiropoulos N, Mwaikambo LY, Ansell MP, Dufresne A, Entwistle KM, Herrera-Franco PJ, Escamilla GC, Groom L, Hughes M, Hill C, Rials TG, Wild PM (2001) J Mater Sci 9:2107–2131CrossRefGoogle Scholar
  14. 14.
    Nishino T, Takano K, Nakamae K (1995) J Polym Sci, Part B: Polym Phys 11:1647–1651CrossRefGoogle Scholar
  15. 15.
    Sakurada I, Nukushina Y, Ito T (1962) J Polym Sci 165:651–660CrossRefGoogle Scholar
  16. 16.
    Guhados G, Wan W, Hutter JL (2005) Langmuir 14:6642–6646CrossRefGoogle Scholar
  17. 17.
    Hsieh YC, Yano H, Nogi M, Eichhorn S (2008) Cellulose 4:507–513CrossRefGoogle Scholar
  18. 18.
    Gea S, Bilotti E, Reynolds CT, Soykeabkeaw N, Peijs T (2010) Mater Lett 8:901–904CrossRefGoogle Scholar
  19. 19.
    Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Adv Mater 2:153–155CrossRefGoogle Scholar
  20. 20.
    Lee K-Y, Blaker JJ, Bismarck A (2009) Compos Sci Technol 15–16:2724–2733CrossRefGoogle Scholar
  21. 21.
    Kim Y, Jung R, Kim H-S, Jin H-J (2009) Curr Appl Phys 1(Supplement 1):S69–S71CrossRefGoogle Scholar
  22. 22.
    Li ZQ, Zhou XD, Pei CH (2010) Polym Plast Technol Eng 2:141–146CrossRefGoogle Scholar
  23. 23.
    Gindl W, Keckes J (2004) Compos Sci Technol 15:2407–2413CrossRefGoogle Scholar
  24. 24.
    Schramm M, Hestrin S (1954) J Gen Microbiol 1:123–129Google Scholar
  25. 25.
    Watanabe K, Tabuchi M, Morinaga Y, Yoshinaga F (1998) Cellulose 3:187–200CrossRefGoogle Scholar
  26. 26.
    Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S, Nishi Y, Uryu M (1989) J Mater Sci 9:3141–3145CrossRefGoogle Scholar
  27. 27.
    Gea S, Reynolds CT, Roohpour N, Wirjosentono B, Soykeabkaew N, Bilotti E, Peijs T (2011) Bioresour Technol 19:9105–9110CrossRefGoogle Scholar
  28. 28.
    Quero F, Nogi M, Yano H, Abdulsalami K, Holmes SM, Sakakini BH, Eichhorn SJ (2010) ACS Appl Mater Interfaces 1:321–330CrossRefGoogle Scholar
  29. 29.
    Quero F, Nogi M, Lee K-Y, Poel GV, Bismarck A, Mantalaris A, Yano H, Eichhorn SJ (2011) ACS Appl Mater Interfaces 2:490–499CrossRefGoogle Scholar
  30. 30.
    Hestrin S, Schramm M (1954) Biochem J 2:345–352Google Scholar
  31. 31.
    Marquardt DW (1963) SIAM J Appl Math 2:431–441Google Scholar
  32. 32.
    Nyambo C, Mohanty AK, Misra M (2011) Macromol Mater Eng 8:710–718CrossRefGoogle Scholar
  33. 33.
    Carlson D, Dubois P, Nie L, Narayan R (1998) Polym Eng Sci 2:311–321CrossRefGoogle Scholar
  34. 34.
    Carlson D, Nie L, Narayan R, Dubois P (1999) J Appl Polym Sci 4:477–485CrossRefGoogle Scholar
  35. 35.
    Thompson MR, Tzoganakis C, Rempel GL (1998) Polymer 2:327–334CrossRefGoogle Scholar
  36. 36.
    Thompson MR, Tzoganakis C, Rempel GL (1999) J Appl Polym Sci 3:503–516CrossRefGoogle Scholar
  37. 37.
    Vicente A, Pereira S, Nunes T, Ribeiro M (2011) J Polym Res 4:527–532CrossRefGoogle Scholar
  38. 38.
    Pretsch E, Bühlmann P, Affolter C (2000) Structure determination of organic compounds. Springer-Verlag, BerlinGoogle Scholar
  39. 39.
    Wiley JH, Atalla RH (1987) Carbohydr Res, 113–129Google Scholar
  40. 40.
    Gierlinger N, Schwanninger M, Reinecke A, Burgert I (2006) Biomacromolecules 7:2077–2081CrossRefGoogle Scholar
  41. 41.
    Edwards HGM, Farwell DW, Webster D (1997) Spectrochim Acta Part A Mol Biomol Spectrosc 13:2383–2392CrossRefGoogle Scholar
  42. 42.
    Rusli R, Eichhorn SJ (2008) Appl Phys Lett 3:033111–033113CrossRefGoogle Scholar
  43. 43.
    Šturcová A, Davies GR, Eichhorn SJ (2005) Biomacromolecules 2:1055–1061CrossRefGoogle Scholar
  44. 44.
    Eichhorn SJ, Sirichaisit J, Young RJ (2001) J Mater Sci 13:3129–3135CrossRefGoogle Scholar
  45. 45.
    Eichhorn SJ, Young RJ (2003) Compos Sci Technol 9:1225–1230CrossRefGoogle Scholar
  46. 46.
    Huda MS, Drzal LT, Misra M, Mohanty AK (2006) J Appl Polym Sci 5:4856–4869CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Franck Quero
    • 1
  • Stephen J. Eichhorn
    • 1
    • 5
  • Masaya Nogi
    • 2
  • Hiroyuki Yano
    • 3
  • Koon-Yang Lee
    • 4
  • Alexander Bismarck
    • 4
  1. 1.School of Materials, Materials Science CentreUniversity of ManchesterManchesterUK
  2. 2.The Institute of Scientific and Industrial ResearchOsaka UniversityIbarakiJapan
  3. 3.Research Institute for the Sustainable HumanosphereKyoto UniversityUjiJapan
  4. 4.Polymer and Composites Engineering (PaCE) Group, Department of Chemical EngineeringImperial College LondonLondonUK
  5. 5.College of Engineering, Mathematics and Physical SciencesExeterUK

Personalised recommendations