Journal of Polymers and the Environment

, Volume 20, Issue 4, pp 944–949 | Cite as

Production of Polyhydroxyalkanoates from Fatty Wastes

  • Silvana Povolo
  • Maria Giovanna Romanelli
  • Federico Fontana
  • Marina Basaglia
  • Sergio Casella
Original Paper


The production of polyesters from triglyceride containing substrates was investigated. A first filter step based on lipase activity was followed and those bacteria potentially able to degrade oils or animal fats were further tested for their polymer accumulation properties, selected and kept for further studies. In a second step, bacteria were directly grown on animal fats and/or vegetable oils, and polyhydroxyalkanoates (PHAs) accumulation was verified under appropriate incubation conditions. Each substrate, whether of animal or vegetable derivation, supported the growth of a number of the newly isolated strains and among those, some strains were also found to produce reasonably high amounts of PHA. The repeat-unit composition of the polyesters was determined by gas chromatography (GC) analysis of the ß-hydroxyalkanoate methyl esters from the hydrolyzed polymer and some class of co-polymers were also detected. These properties, coupled with the ability of some of the selected isolates to grow and produce lipases on a minimal medium, could be considered as promising in view of possible industrial applications. The overall results indicate that PHAs could be produced from waste containing considerable amounts of fat, oil and grease (FOG), that generally need to be treated for their disposal.


Bioplastics Polyhydroxyalkanoates Lipid waste Lipase activity 



We thank the slaughterhouse Fratelli Tosetto—Commercio e Lavorazione Carni S.A.S. (Italy) for providing waste material from slaughterhouse and Argent Energy (UK) for providing tallow. We are grateful to D. Di Nunno for technical assistance. M.G. Romanelli is recipient of a PhD fellowship of the University of Padova. This work was supported by UE-ANIMPOL project.


  1. 1.
    Madison LL, Huisman GW (1999) Microbiol Mol Biol Rev 63:21–53Google Scholar
  2. 2.
    Akaraonye E, Keshavarz T, Roy I (2010) J Chem Technol Biotechnol 85:732–743CrossRefGoogle Scholar
  3. 3.
    Philip S, Keshavarz T, Roy I (2007) J Chem Technol Biotechnol 82:233–247CrossRefGoogle Scholar
  4. 4.
    Tian PY, Shang L, Ren H, Mi Y, Fan DD, Jiang M (2009) Afr J Biotechnol 8:709–714Google Scholar
  5. 5.
    Bhubalan K, Lee WH, Loo CY, Yamamoto T, Tsuge T, Doi Y, Sudesh K (2008) Polym Degrad Stab 93:17–23CrossRefGoogle Scholar
  6. 6.
    Albuquerque MGE, Eiroa M, Torres C, Nunes BR, Reis MAM (2007) J Biotechnol 130:411–421CrossRefGoogle Scholar
  7. 7.
    Povolo S, Casella S (2003) Macromol Symp 197:1–9CrossRefGoogle Scholar
  8. 8.
    Koller M, Bona R, Chiellini E, Fernandes EG, Horvat P, Kutschera C, Hesse P, Braunegg G (2008) Bioresour Technol 99:4854–4863CrossRefGoogle Scholar
  9. 9.
    Yu J, Heiko S (2008) Bioresour Technol 99:8042–8048CrossRefGoogle Scholar
  10. 10.
    Bengtsson S, Werker A, Christensson M, Welander T (2008) Bioresour Technol 99:509–516CrossRefGoogle Scholar
  11. 11.
    Kalscheuer R, Stolting T, Steinbuchel A (2006) Microbiology 152:2529–2536CrossRefGoogle Scholar
  12. 12.
    Rahman KSM, Rahman TJ, McClean S, Marchant R, Banat IM (2002) Biotechnol Prog 18:1277–1281CrossRefGoogle Scholar
  13. 13.
    Akiyama M, Tsuge T, Doi Y (2003) Polym Degrad Stab 80:183–194CrossRefGoogle Scholar
  14. 14.
    Ashby RD, Foglia TA (1998) Appl Microbiol Biotechnol 49:431–437CrossRefGoogle Scholar
  15. 15.
    Alias Z, Tan IKP (2005) Bioresour Technol 96:1229–1234CrossRefGoogle Scholar
  16. 16.
    Fernández D, Rodriguéz E, Bassas M, Viñas M, Solanas AM, Llorens J, Marqués AM, Manresa A (2005) Biochem Eng J 26:159–167CrossRefGoogle Scholar
  17. 17.
    Verlinden RAJ, Hill DJ, Kenward MA, Williams CD, Piotrowska-Seget Z, Radecka IK (2011) AMB Express 1:11CrossRefGoogle Scholar
  18. 18.
    Jaeger KE, Dijkstra BW, Reetz MT (1999) Annu Rev Microbiol 53:315–351CrossRefGoogle Scholar
  19. 19.
    Rosenberg E, Ron EZ (1999) Appl Microbiol Biotechnol 52:154–162CrossRefGoogle Scholar
  20. 20.
    Gupta P, Upadhyay LSB, Shrivastava R (2011) Res J Microbiol 6:281–288CrossRefGoogle Scholar
  21. 21.
    Ramsay BA, Lomaliza K, Chavarie C, Dubè B, Bataille P, Ramsay JA (1990) Appl Environ Microbiol 56:2093–2098Google Scholar
  22. 22.
    Kouker G, Jaeger KE (1987) Appl Environ Microbiol 53:211–213Google Scholar
  23. 23.
    Povolo S, Toffano P, Basaglia M, Casella S (2010) Bioresour Technol 101:7902–7907CrossRefGoogle Scholar
  24. 24.
    Sambroock J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbour Laboratory, Cold Spring HarbourGoogle Scholar
  25. 25.
    Weidner S, Arnold W, Stackbrandt E, Pühler A (2000) Microb Ecol 39:22–31CrossRefGoogle Scholar
  26. 26.
    Maidak BL, Cole JR, Lilburn TG, Parker CT Jr, Saxman PR, Stredwick JM, Garrity GM, Li B, Olsen GJ, Pramanik S, Schmidt TM, Tiedje JM (2000) Nucleic Acids Res 28:173–174CrossRefGoogle Scholar
  27. 27.
    Pinsirodom P, Parkin KL (2001) Current protocols in food analytical chemistry. Wiley, London, pp C3.1.1–C3.1.13Google Scholar
  28. 28.
    Braunegg G, Sonnleitner B, Lafferty RM (1978) Eur J Appl Microbiol Biotechnol 6:29–37CrossRefGoogle Scholar
  29. 29.
    Sangeetha R, Arulpandi I, Geetha A (2011) Res J Microbiol 6:1–24CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Silvana Povolo
    • 1
  • Maria Giovanna Romanelli
    • 1
  • Federico Fontana
    • 1
  • Marina Basaglia
    • 1
  • Sergio Casella
    • 1
  1. 1.Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE)Università di PadovaLegnaroItaly

Personalised recommendations