Journal of Polymers and the Environment

, Volume 21, Issue 1, pp 245–258 | Cite as

The Potential of Chicken Eggshell Waste as a Bio-filler Filled Epoxidized Natural Rubber (ENR) Composite and its Properties

  • Punyanich Intharapat
  • Aroon Kongnoo
  • Kavichat Kateungngan
Original Paper


Eggshell calcium carbonate (ECC) and eggshell calcium carbonate treated with high temperature (ECC-600) were prepared from chicken eggshell waste. ECC was obtained by crushing eggshell waste, eliminating membranes and followed by sieving. In the case of ECC-600, ECC powder was additionally heated at 600 °C for 2 h. Both were used to promote as fillers compared to that of commercial light-precipitated calcium carbonate (commercial CaCO3) with various loading levels (i.e., 0, 25, 50 and 75 phr) in epoxidized natural rubber containing 25 mol% of epoxide group (ENR-25). Among the three types of fillers (i.e., ECC, ECC-600 and commercial CaCO3), ECC filled materials showed superior vulcanization characteristics by the increasing of maximum torque (MH) and cure rate index (CRI) with the reducing of cure time (tc90) and scorch time (ts2). The highest tensile properties as well as the lowest tension set value were also observed. Morphological property revealed that ECC was greater interfacial adhesion than those of others. In addition, dynamic mechanical properties of vulcanizates containing ECC, storage modulus (E′) was the highest and glass transition temperature (T g ) shifted toward high temperature. Increasing of loading levels of any fillers affected the increase of MH and CRI with reducing of tc90 and ts2. However, tensile properties decreased with increasing filler content but it did not affect T g shifting except for a series of vulcanizates containing ECC.


Eggshell Epoxidized natural rubber Calcium carbonate Bio-filler 



The authors are deeply grateful to Dr. Daniel Derouet for valuable suggestions given. We are also thankful to the faculty of Science, Ubonrachathani University for access to facilities throughout the work.


  1. 1.
    Sonnier R, Leroy E, Clerc L, Bergeret A, Lopez-cuesta JM, Bretelle AS, Ienny P (2008) Polym Test 27:901–907CrossRefGoogle Scholar
  2. 2.
    Sonnier R, Leroy E, Clerc L, Bergere A, Lopez-Cuesta JM (2007) Polym Test 26:274–281CrossRefGoogle Scholar
  3. 3.
    Qin J, Ding H, Wang X, Xie M, Yu Z (2008) Polym Test 27:321–329CrossRefGoogle Scholar
  4. 4.
    Ismail H, Awang M, Hazizan MA (2006) Polym Plast Technol Eng 45:463–468CrossRefGoogle Scholar
  5. 5.
    Awang M, Ismail H (2008) Polymer Test 27:321–329CrossRefGoogle Scholar
  6. 6.
    Ishak ZAM, Bakar AA (1995) Eur Polym J 31:259–269CrossRefGoogle Scholar
  7. 7.
    Ishak ZAM, Abu Bakar A, Ishiaku US, Hashim AS, Azahari B (1997) Eur Polym J 33:73–79CrossRefGoogle Scholar
  8. 8.
    Sombatsompop N, Thongsang S, Markpin T, Wimolmala E (2004) J Appl Polym Sci 93:2119–2130CrossRefGoogle Scholar
  9. 9.
    Thongsang S, Sombatsompop N (2007) J Sci Technol 14:77–89Google Scholar
  10. 10.
    Xu Y, Wu Q, Lei Y, Fei Y (2010) Biores Technol 101:3280–3286CrossRefGoogle Scholar
  11. 11.
    Stael GC, Tavares MIB, D’Almeida JRM (2001) Polym Test 20:869–872CrossRefGoogle Scholar
  12. 12.
    Ismail H, Rusli A, Rashid AA (2005) Polym Test 24:856–862CrossRefGoogle Scholar
  13. 13.
    Stadelman WJ (2000) Eggs and egg products. In: Francis FJ (ed) Encyclopedia of food science and technology. Wiley, New York, pp 593–599Google Scholar
  14. 14.
    Ruangsittichai J, Viyanant V, Vichasri-Grams S, Sobhon P, Tesana S, Upatham ES, Hofmann A, Korge G, Grams R (2006) Int J Parasitol 36:1329–1339CrossRefGoogle Scholar
  15. 15.
    Dupoirieux L, Pourquier D, Souyris F (1995) J Cranio-maxillofac Surg 23:187–194CrossRefGoogle Scholar
  16. 16.
    Ishizuka Y, Kawamoto Y, Imai H (1992) Nippon Kagaku Kaishi 5:477–483CrossRefGoogle Scholar
  17. 17.
    Balázsi C, Wéber F, Kövér Z, Horváth E, Németh C (2007) J Eur Ceram Soc 27:1601–1606CrossRefGoogle Scholar
  18. 18.
    Yoo S, Hsieh SJ, Zou P, Kokoszka J (2009) Bioresour Technol 100:6416–6421CrossRefGoogle Scholar
  19. 19.
    Toro P, Quijada R, Yazdani-Pedram M, Arias JL (2007) Mater Lett 61:4347–4350CrossRefGoogle Scholar
  20. 20.
    Supri AG, Ismail H, Shuhadah S (2010) Polym Plast Technol Eng 49:347–353CrossRefGoogle Scholar
  21. 21.
    Nys Y, Hincke MT, Arias JL, Garcia-Ruiz JM, Solomon SE (1999) Poult Avian Biol Rev 10:143–166Google Scholar
  22. 22.
    Arias JL, Fink DJ, Xiao S, Heuer AH, Caplan AI (1993) Int Rev Cytol 145:217–250CrossRefGoogle Scholar
  23. 23.
    Lohakul A, Kaesaman A, Rungvichaniwat A, Nakason C (2007) e Polymers 8:1–11Google Scholar
  24. 24.
    Rothon R (2003) In: Rothon R (ed) Particulate-filled polymer composites. Rapra Technology Limited, Shrewsbury, pp 399–401Google Scholar
  25. 25.
    Wypych G (1999) In: Wypych G (ed) Handbook of fillers. Chem Tec Publishing, Toronto, pp 48–57Google Scholar
  26. 26.
    Dakhel HR (2008) e Polymers 140:1–9Google Scholar
  27. 27.
    Saeb MR, Dakhel HR, Ghaffari A (2008) AIP Conf Proc 1042:312–314CrossRefGoogle Scholar
  28. 28.
    Teh PL, Mohd Ishak ZA, Hashim AS, Karger-Kocsis J, Ishiaku US (2004) Eur Polym J 40:2513–2521CrossRefGoogle Scholar
  29. 29.
    Arroyo M, López-Manchado MA, Valentίn JL, Carretero J (2007) Compos Sci Technol 67:1330–1339CrossRefGoogle Scholar
  30. 30.
    Rajasekar R, Pal K, Heinrich G, Das A, Das CK (2009) Mater Des 30:3839–3845CrossRefGoogle Scholar
  31. 31.
    Freire MN, Holanda JNF (2006) Cerâmica 52:240–244CrossRefGoogle Scholar
  32. 32.
    Fraser AC, Cusak M (2002) Am Microsc Anal 53:23–24Google Scholar
  33. 33.
    Sae-oui P, Rakdee C, Thanmathorn P (2002) J Appl Polym Sci 83:2485–2493CrossRefGoogle Scholar
  34. 34.
    Moore DM, Reynolds RC (1989) X-Ray diffraction and the identification and analysis of clay minerals. Oxford University Press, NewYork, pp 234–235Google Scholar
  35. 35.
    Naemchanthara K (2008) Temperature effect on chicken eggshells as investigated by XRD, TGA, FT-IR and ESR techniques. Ph.D. Dissertation, King Mongkut’s University of Technology Thonburi, Bangkok, ThailandGoogle Scholar
  36. 36.
    Tsai WT, Yang JM, Hsu HC, Lin CM, Lin KY, Chiu CH (2008) Microp Mesop Mater 111:379–386CrossRefGoogle Scholar
  37. 37.
    Tsai WT, Yang JM, Lai CW, Cheng YH, Lin CC, Yeh CW (2006) Biores Tech 97:488–493CrossRefGoogle Scholar
  38. 38.
    Mann K, Siedler F (1999) Biochem Mol Biol Int 47:997–1007Google Scholar
  39. 39.
    Rivera EM, Ariza M, Brostow W, Castano VM, Diaz-Estrada JR, Hernandez R, Rodriguez JR (1999) Mater Lett 41:128–134CrossRefGoogle Scholar
  40. 40.
    Wang PY, Chen Y, Qian HL (2007) J Appl Polym Sci 105:3255–3259CrossRefGoogle Scholar
  41. 41.
    Tajima Y (1991) Process for acceleratively vulcanizing rubbers with protein serum. US Patent 4,987,196, 22 Jan 1991Google Scholar
  42. 42.
    Wei W, Gu H (2009) Mater Design 30:2741–2744CrossRefGoogle Scholar
  43. 43.
    Schloman WW Jr, Teetor VH, Ray DT (2006) Rubb Chem Tech 79:631–640CrossRefGoogle Scholar
  44. 44.
    Boonstra BB (1971) In: Blow CM (ed) Rubber technology and manufacture. Butterworth Scientific, London, pp 250–300Google Scholar
  45. 45.
    Poompradub S, Ikeda Y, Kokubo Y, Shiono T (2008) Eur Polym J 44:4157–4164CrossRefGoogle Scholar
  46. 46.
    Geethamma VG, Kalaprasad G, Groeninckx G, Thomas S (2005) Compos Part A 36:1499–1506CrossRefGoogle Scholar
  47. 47.
    Ibarra L, Chamorro C (1991) J Appl Polym Sci 83:1805–1819CrossRefGoogle Scholar
  48. 48.
    Dong S, Gauvin R (1993) Polym Compos 14:414–420CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Punyanich Intharapat
    • 1
    • 2
    • 3
  • Aroon Kongnoo
    • 3
    • 5
  • Kavichat Kateungngan
    • 4
  1. 1.Environmental Biotechnology Research UnitPrince of Songkla UniversityHatyaiThailand
  2. 2.Center of Excellence for Environmental and Hazardous Waste Management (EHWM)BangkokThailand
  3. 3.Faculty of Environmental ManagementPrince of Songkla UniversityHatyaiThailand
  4. 4.Department of Chemistry, Faculty of ScienceUbon Ratchathani UniversityUbon RatchathaniThailand
  5. 5.The Joint Graduate School of Energy and Environment (JGSEE)King Mongkut’s University of Technology ThonburiBangkokThailand

Personalised recommendations