Advertisement

Journal of Polymers and the Environment

, Volume 20, Issue 3, pp 760–773 | Cite as

Optimization of Polyhydroxyalkanoates Production from Thermus thermophilus HB8 Using Response Surface Methodology

  • Chistos P. Papaneophytou
  • Dimitrios A. Kyriakidis
Original Paper

Abstract

The thermophilic bacterium Thermus thermophilus HB8 was used for the overproduction of polyhydroxyalkanoates (PHAs) using a mathematical approach for the first time for optimization of process variables. In addition, the combined effect of nitrogen and phosphate concentrations on PHAs production was also investigated. A five-level-three-factor central composite rotary design was employed in combination with response surface methodology (RSM) to optimize the process variables for the production of PHAs in Thermus thrermophilus HB8. The three independent variables studied in the work were cultivation time, C/N ratio and phosphate concentration. Two second-order polynomial equations were obtained for biomass and PHA production by multiple regression analysis using RSM. The statistical analyses of the results showed that all the three variables had significant impact both on the cell growth and polymer accumulation. The model predicted a maximum PHA production of 0.47 g/L which represents the 42 % of dry cell weight (DCW) after 55 h of cultivation and with on setting the C/N ratio at 9:1 g/g and phosphate concentration at 20 mM. Verification of the predicted value resulted into a PHA production of 0.44 g/L (40.36 % of DCW).

Keywords

Polyhydroxyalkanoates (PHA) Response surface methodology (RSM) Thermus thermophilus HB8 

Notes

Conflict of interest

The authors have declared no conflict of interest.

References

  1. 1.
    Lopez JA, Bucala V, Villar MA (2010) Ind Eng Chem Res 49:1762CrossRefGoogle Scholar
  2. 2.
    Reddy CSK, Ghai R, Rashmi XX, Kalia VC (2003) Bioresour Technol 87:137CrossRefGoogle Scholar
  3. 3.
    Madison LL, Huisman GW (1999) Microbiol Mol Biol Rev 63:21Google Scholar
  4. 4.
    Anderson AJ, Dawes EA (1990) Microbiol Rev 54:150Google Scholar
  5. 5.
    Steinbüchel A, Fuchtenbüsch B (1998) Trends Biotechnol 16:419CrossRefGoogle Scholar
  6. 6.
    Xiaoying M, Guangming Z, Chang Z, Zisong W, Jian Y, Jianbing L, Guohe H, Hongliang L (2009) J Colloid Interface Sci 337:408CrossRefGoogle Scholar
  7. 7.
    Porwal S, Kumar T, Lal S, Rani A, Kumar S, Cheema S, Purohit HJ, Sharma R, Singh Patel SK, Kalia VC (2008) Bioresour Technol 99:5444Google Scholar
  8. 8.
    Lee SY, Wong HH, Choi J, Lee SH, Lee SC, Han CS (2000) Biotechnol Bioeng 68:466CrossRefGoogle Scholar
  9. 9.
    Gross RA, DeMello C, Lenz RW, Brandl H, Fuller RC (1989) Biomacromolecules 22:1106CrossRefGoogle Scholar
  10. 10.
    Ryu HW, Cho KS, Philip RG, Park H-C (2008) Biotechnol Bioproc Eng 13:651CrossRefGoogle Scholar
  11. 11.
    Mirsa SK, Valappil SP, Roy I, Boccaccini AR (2006) Biomacromolecules 7:2249CrossRefGoogle Scholar
  12. 12.
    Sudesh K, Abe H, Doi Y (2000) Prog Polym Sci 25:1503CrossRefGoogle Scholar
  13. 13.
    Byrom D (1987) Trends Biotechnol 5:246CrossRefGoogle Scholar
  14. 14.
    Choi J, Lee SY (2000) Appl Microbiol Biotechnol 53:646CrossRefGoogle Scholar
  15. 15.
    Kim H, Kang Y, Beuchat LR, Ryu JH (2008) Food Microbiol 25:964CrossRefGoogle Scholar
  16. 16.
    Jun YS, Yu SH, Ryu KG, Lee TJ (2008) J Microbiol Biotechnol 18:1130Google Scholar
  17. 17.
    Khuri AI, Cornell JA (1987) In: Dekker M (ed) Response surface: design and analyses. ASQC Quality Press, New YorkGoogle Scholar
  18. 18.
    Montgomery DC (1991) Design and analysis of experiments, 3rd edn. Wiley, New YorkGoogle Scholar
  19. 19.
    Nikel PI, Pettinari MJ, Mendez BS, Galvagno MA (2005) Int Microbiol 8:243Google Scholar
  20. 20.
    Bas D, Boyaci IH (2007) J Food Engin 78:836CrossRefGoogle Scholar
  21. 21.
    Sharma L, Kumar Singh A, Panda B, Mallick N (2007) Bioresour Technol 98:987Google Scholar
  22. 22.
    Mallick N, Gupta MN, Panda B, Sen R (2007) Biochem Engin J 37:125CrossRefGoogle Scholar
  23. 23.
    Khanna S, Srivastava AK (2005) Process Biochem 40:2173CrossRefGoogle Scholar
  24. 24.
    Lee KM, Gilmore DF (2005) Process Biochem 40:229CrossRefGoogle Scholar
  25. 25.
    Lakshmar K, Rastogi NK, Shamala TR (2004) Process Biochem 39:1977CrossRefGoogle Scholar
  26. 26.
    Sankhla IS, Bhati R, Singh AK, Mallick N (2010) Bioresour Technol 101:1947CrossRefGoogle Scholar
  27. 27.
    Singh AK, Mallick N (2009) Biotechnol J 4:703CrossRefGoogle Scholar
  28. 28.
    Sangkharak K, Prasertsan P (2007) J Biotechnol 132:331CrossRefGoogle Scholar
  29. 29.
    Hong C, Hao H, Wu H (2009) Biomass Bioener 33:721CrossRefGoogle Scholar
  30. 30.
    Pantazaki AA, Tambaka MG, Langlois V, Guerin P, Kyriakidis DA (2003) Mol Cell Biochem 254:173CrossRefGoogle Scholar
  31. 31.
    Pantazaki AA, Papaneophytou CP, Pritsa AG, Kyriakidis D (2009) Process Biochem 44:847CrossRefGoogle Scholar
  32. 32.
    Pantazaki AA, Papaneophytou CP, Lambropoulou DA (2012) AMB express 1:17CrossRefGoogle Scholar
  33. 33.
    Valappil P, Misra SK, Boccaccini AR, Roy I (2006) Expert Rev Med Devices 3:853CrossRefGoogle Scholar
  34. 34.
    Ryu HW, Hahn SK, ChangYK, Chang HN (1997) Biotechnol Bioeng 55:28Google Scholar
  35. 35.
    Luzier WD (1992) Proc Natl Acad Sci USA 89:839CrossRefGoogle Scholar
  36. 36.
    Anjum MF, Tasadduq I, Al-Sultan K (1997) Eur J Oper Res 101:65CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Chistos P. Papaneophytou
    • 1
  • Dimitrios A. Kyriakidis
    • 1
  1. 1.Laboratory of Biochemistry, Department of ChemistryAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations