Journal of Polymers and the Environment

, Volume 19, Issue 4, pp 841–848 | Cite as

Effects of Incorporating Polycaprolactone and Flax Fiber into Glycerol-Plasticized Pea Starch

  • Olayide O. Fabunmi
  • Lope G. Tabil
  • Satyanarayan Panigrahi
  • Peter R. Chang
Original Paper


This study focused on improving the material properties of pea thermoplastic starch (TPS) with polycaprolactone (PCL) and flax fiber. Accordingly, composites of glycerol-plasticized pea starch, polycaprolactone, and flax fiber were prepared through solid-phase compounding and compression-molding. The specimens were characterized through scanning electron microscopy, tensile test, moisture absorption test, and differential scanning calorimetry. Morphological studies of the tensile fracture surfaces revealed poor TPS-PCL interfacial interaction and limited TPS-flax fiber interfacial bonding. The composites showed significant improvements in tensile strength with reduced moisture absorption capability essentially due to the hydrophobicity of PCL. Individual components of the composites retained their respective thermal properties, an indication of thermodynamic immiscibility.


Thermoplastic starch Polycaprolactone Flax fiber Composites Properties 



The authors are grateful to the Natural Sciences and Engineering Research Council (Canada) for providing the financial support for this study. The authors also appreciate Nutri-Pea Ltd. (Portage La Prairie, MB) for generously supplying the pea starch used. We equally acknowledge the assistance provided by Dr Yun Chen and Debbie Anderson of Agriculture and Agri-Food Canada, Thomas Bonli of Department of Geological Science, University of Saskatchewan, and the technical staff of the Department of Agricultural and Bioresource Engineering now Department of Chemical and Biological Engineering, University of Saskatchewan, Canada, towards the successful completion of this study.


  1. 1.
    Griffin GJL (1974) Adv Chem Ser 134:159–170CrossRefGoogle Scholar
  2. 2.
    Willett JL (1994) J Appl Polym Sci 54(11):1685–1695CrossRefGoogle Scholar
  3. 3.
    Takagi S, Koyama M, Kameyama H, Tokiwa Y (1994) In: Doi Y, Fukuda K (eds) Biodegradable plastics and polymers. Elsevier Science, Amsterdam, pp 437–442Google Scholar
  4. 4.
    Kim M, Lee S-J (2002) Carbohydr Polym 50:331–337CrossRefGoogle Scholar
  5. 5.
    Nawang R, Danjaji ID, Ishiaku US, Ismail H, Mohd Ishak ZA (2001) Polym Test 20:167–172CrossRefGoogle Scholar
  6. 6.
    Abdul Khalil HPS, Chow WC, Rozman HD, Ismail H, Ahmad MN, Kumar RN (2001) Polym Plast Technol Eng 40(3):249–263CrossRefGoogle Scholar
  7. 7.
    Albertsson A-C, Karlsson S (1995) Acta Polym 46:114–123CrossRefGoogle Scholar
  8. 8.
    Wang X-L, Yang K-K, Wang Y-Z (2003) J Macromol Sci C43(3):385–409Google Scholar
  9. 9.
    Yang J, Yu J, Ma X (2006) (Starch Stärke) 58:330–337CrossRefGoogle Scholar
  10. 10.
    De Carvalho AJF, Zambon MD, Curvelo AAS, Gandini A (2003) Polym Degrad Stab 79:133–138CrossRefGoogle Scholar
  11. 11.
    Schlemmer D, de Oliveira E, Araújo Sales M (2007) J Therm Anal Calorim 87(3):635–638Google Scholar
  12. 12.
    Huneault MA, Li H (2007) Polymer 48:270–280CrossRefGoogle Scholar
  13. 13.
    Kazuo O, Isao Y, Toshiaki Y, Shin O, Seichi R, Yuuko N, Choichiro S (1998) B Chem Soc Jpn 71(5):1095–1100CrossRefGoogle Scholar
  14. 14.
    Ma XF, Yu JG (2004) Acta Polym Sin 2:240–245Google Scholar
  15. 15.
    Ma X, Yu J (2004) J Appl Polym Sci 93:1769–1773CrossRefGoogle Scholar
  16. 16.
    Kirby AR, Clark SA, Parker R, Smith AC (1993) J Mater Sci 28(21):5937–5942CrossRefGoogle Scholar
  17. 17.
    Thunwall M, Boldizar A, Rigdahl M, Kuthanova V (2006) Int J Polym Anal Ch 11:419–428CrossRefGoogle Scholar
  18. 18.
    Torres FG, Arroyo OH, Gómez C (2007) J Thermoplast Compos 20:207–223CrossRefGoogle Scholar
  19. 19.
    Wollerdorfer M, Bader H (1998) Ind Crop Prod 8:105–112CrossRefGoogle Scholar
  20. 20.
    Vilaseca F, Mendez JA, Pèlach A, Llop M, Cañigueral N, Gironès J, Turon X, Mutjé P (2007) Proc Biochem 42:329–334CrossRefGoogle Scholar
  21. 21.
    Cyras VP, Vallo C, Kenny JM, Vazquez A (2003) J Compos Mater 38(16):1387–1399Google Scholar
  22. 22.
    De Carvalho AJF, Curvelo AAS, Agnelli JAM (2001) Carbohydr Polym 45(2):189–194CrossRefGoogle Scholar
  23. 23.
    Hwan-Man P, Won-Ki Lee C-YP, Won-Jei Cho C-SH (2003) J Mater Sci 38(5):909–915CrossRefGoogle Scholar
  24. 24.
    De Carvalho AJF, Curvelo AAS, Agnelli JAM (2002) Int J Polym Mater 51:647–660CrossRefGoogle Scholar
  25. 25.
    Ma XF, Yu JG, Wang N (2007) Carbohydr Polym 67:32–39CrossRefGoogle Scholar
  26. 26.
    Yu L, Christie G (2005) J Mater Sci 40:111–116CrossRefGoogle Scholar
  27. 27.
    St-Pierre N, Favis BD, Ramsay BA, Ramsay JA, Ramsay JA, Verhoogt H (1997) Polymer 38(3):647–655CrossRefGoogle Scholar
  28. 28.
    Wang N, Yu J, Ma X, Wu Y (2007) Carbohydr Polym 67:446–453CrossRefGoogle Scholar
  29. 29.
    Wang S, Yu J, Yu J (2005) Polym Degrad Stab 87:395–401CrossRefGoogle Scholar
  30. 30.
    Chen Y, Ishikawa Y, Zhang Z, Maekawa T (2003) ASABE Meeting Paper No. 036021 St. Joseph, Mich: ASABEGoogle Scholar
  31. 31.
    Ikeo Y, Aoki K, Kishi H, Matsuda S, Murakami A (2006) Polym Adv Tech 17:940–944CrossRefGoogle Scholar
  32. 32.
    Martin O, Avérous L (2001) Polymer 42:6209–6219CrossRefGoogle Scholar
  33. 33.
    Matzinos P, Tserki V, Kontoyiannis A, Panayiotou C (2002) Polym Degrad Stab 77:17–24CrossRefGoogle Scholar
  34. 34.
    Shin B-Y, Lee S, Shin Y-S, Balakrishnan S, Narayan R (2004) Polym Eng Sci 44(8):1429–1438CrossRefGoogle Scholar
  35. 35.
    Elzein T, Nasser-Eddine M, Delaite C, Bistac S, Dumas P (2004) J Colloid Interface Sci 273:381–387CrossRefGoogle Scholar
  36. 36.
    Shimao M (2001) Curr Opin Biotechnol 12:242–247CrossRefGoogle Scholar
  37. 37.
    Morton WE, Hearle JWS (1975) Physical properties of textile fibers, 2nd edn. Wiley, New YorkGoogle Scholar
  38. 38.
    Bürger H, Koine A, Maron R, Mieck K-P (1995) Int Polymer Sci Tech 25(8):22–34Google Scholar
  39. 39.
    Wielage B, Lampke T, Marx G, Nestler K, Starke D (1999) Thermochimica Acta 337(1–2):169–177CrossRefGoogle Scholar
  40. 40.
    Bledzki AK, Gassan J (1999) Prog Polym Sci 24:174–221CrossRefGoogle Scholar
  41. 41.
    Flemming M, Ziegmann G, Roth S (1995) Einführung, Faserverbundbauweisen: Fasern und Matrices, Berlin: Springer, pp 1–5, 155–179Google Scholar
  42. 42.
    ASTM (2003) ASTM D 3039—Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. In: Annual book of ASTM standards, vol 15.03. West Conshohocken, PA: American Society for Testing and Materials, pp 98–110Google Scholar
  43. 43.
    Wielage B, Lampke T, Marx G, Nestler K, Starke D (1999) Thermochimica Acta 337(1–2):169–177CrossRefGoogle Scholar
  44. 44.
    Forssell PM, Mikkilä JM, Moates GK, Parker R (1997) Carbohydr Polym 34:275–282CrossRefGoogle Scholar
  45. 45.
    Sarazin P, Li G, Orts WJ, Favis BD (2008) Polymer 49:599–609CrossRefGoogle Scholar
  46. 46.
    Wiedmann W, Strobel E (1991) (Starch Stärke) 43:138–145CrossRefGoogle Scholar
  47. 47.
    Karmaker AC, Youngquist JA (1996) J Appl Polym Sci 62:1147–1151CrossRefGoogle Scholar
  48. 48.
    Wu C-S (2003) Polym Degrad Stab 80:127–134CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Olayide O. Fabunmi
    • 1
  • Lope G. Tabil
    • 1
  • Satyanarayan Panigrahi
    • 1
  • Peter R. Chang
    • 2
  1. 1.Department of Chemical and Biological EngineeringUniversity of SaskatchewanSaskatoonCanada
  2. 2.Bioproducts and BioprocessesAgriculture and Agri-Food CanadaSaskatoonCanada

Personalised recommendations