Skip to main content
Log in

Eco-Friendly, Vascular Shape and Interpenetrating Poly (Acrylic Acid) Grafted Pectin Hydrogels; Biosorption and Desorption Investigations

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The synthesis and characterization of poly (acrylic acid) grafted pectin hydrogel followed by biosorption and desorption characteristics of cadmium, as a model heavy metal, have been studied. The grafted eco-friendly pectin based interpenetrating hydrogel was prepared in the presence of gluteraldehyde crosslinker under N2 atmosphere and characterized using 1H-NMR, FTIR, TGA and SEM techniques. Gluteraldehyde was found to form one-arm and two-arm crosslinks in the copolymer. Upon grafting, two-dimensional sheet structures bounded to tubular and vascular cylindrical rods were observed. The biosorption and desorption data, determined experimentally, were fitted to pseudo-second order reaction kinetics. At higher ionic strength values, the maximum metal uptake value (q max) was lowered and pseudo-second order rate constant (k 2) was increased. Whereas, at higher pH values the maximum metal uptake value (q max) was increased and Pseudo-second order rate constant (k 2) was decreased. 0.1 M HCl solution was a suitable eluent to regenerate the hydrogel surface and recover the adsorbed cadmium metal ions. Pectin based copolymer could be used as an efficient candidature biosorbent for the recovery of cadmium metal ions from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Davidson MH, Dugan LL, Stocki J, Dicklin MR, Maki KC, Coletta F, Cotter R, McLeod M, Hoersten K (1998) J Nutr 128:1927

    CAS  Google Scholar 

  2. Chourasia MK, Jain SK (2004) Drug Delivery 11:129

    Article  CAS  Google Scholar 

  3. Liu L, Fishman ML, Kost J, Hicks KB (2003) Biomaterials 24:3333

    Article  CAS  Google Scholar 

  4. Sriamornsak P, Nunthanid J (1999) J Macroencapsul 16:303

    Article  CAS  Google Scholar 

  5. Fares MM, Assaf SM, Abul-Haija YM (2010) J Appl Polym Sci 117(4):1945

    CAS  Google Scholar 

  6. Kartel MT, Kupchik LA, Veisov BK (1999) Chemosphere 38:2591

    Article  CAS  Google Scholar 

  7. Khvan AM, Abduazimov KA (2001) Chem Nat Comp 37:388

    Article  CAS  Google Scholar 

  8. Kamnev AA, Ptichkina NM, Perfiliev YD, Shkodina OG, Ignatov VV (1995) J Inorg Biochem 59:340

    Article  Google Scholar 

  9. Harel P, Mignot L, Sauvage JP, Junter GA (1998) Ind Crop Prod 7:239

    Article  CAS  Google Scholar 

  10. Dronnet VM, Renard CM, Axelos MA, Thibault JF (1999) Carbohydr Polym 30:253

    Article  Google Scholar 

  11. Namasivayam C, Ranganathan K (1995) Environ Technol 16:851

    CAS  Google Scholar 

  12. Bailey SE, Olin TJ, Bricka RM, Adrian DD (1999) Water Res 33:2469

    Article  CAS  Google Scholar 

  13. Hegazy EA, Abd SE, Taleb MF, Dessouki AM (2004) J Appl Polym Sci 92:2642

    Article  CAS  Google Scholar 

  14. Inam R, Caykara T, Kantoglu O (2003) Nuc Inst Meth Phys Res B 208:400

    Article  CAS  Google Scholar 

  15. Inam R, Gumu Y, Caykara T (2004) J Appl Polym Sci 94:2401

    Article  CAS  Google Scholar 

  16. Ulusoy U, Symsek S, Ceyhan O (2003) Adsorption 9:165

    Article  CAS  Google Scholar 

  17. Rivas BL, Hernan AP, Maturana A, Villegas S (2001) Macromol Chem Phys 202:443

    Article  CAS  Google Scholar 

  18. Saraydin D, Karadag E, Guven O (2001) J Appl Polym Sci 79:1809

    Article  CAS  Google Scholar 

  19. Fares MM, Othman AA (2008) J Appl Polym Sci 110(5):2815

    Article  CAS  Google Scholar 

  20. Fares MM, Othman AA (2010) J Macromol Sci Part A: Pure Appl Chem 47(1):61

    Article  CAS  Google Scholar 

  21. Merlin DL, Sivasankar B (2009) Euro Polym J 45:165

    Article  CAS  Google Scholar 

  22. Culin J, Smit I, Andreis M, Veksli Z, Anzlovar A, Zigon M (2005) Polymer 46:89

    Article  CAS  Google Scholar 

  23. Zhang XZ, Wu DQ, Chu CC (2004) Biomaterials 25:3793

    Article  CAS  Google Scholar 

  24. Langer R (2003) N A Peppas AIChE J 49:2990

    Article  CAS  Google Scholar 

  25. Jeong B, Gutowska A (2002) Trends Biotechnol 20:305

    Article  CAS  Google Scholar 

  26. Renard CM, Crepeau MJ, Thibault JF (1995) Carbohydrate Res 275:155

    Article  CAS  Google Scholar 

  27. Volesky B (2003) Sorption and biosorption. BV-Sorbex,Inc., St. Lambert, Quebec

    Google Scholar 

  28. Mehta SK, Gaur JP (2005) Crit Rev Biotechnol 25:113

    Article  CAS  Google Scholar 

  29. Fares MM, El-faqeeh AS, Osman ME (2003) J Polym Res 10(2):119

    Article  CAS  Google Scholar 

  30. Swinkles JJM (1985) Starch conversion technology. Marcel Dekker, New York, p 30

    Google Scholar 

Download references

Acknowledgments

Jordan University of Science and Technology is acknowledged for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad M. Fares.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fares, M.M., Tahboub, Y.R., Khatatbeh, S.T. et al. Eco-Friendly, Vascular Shape and Interpenetrating Poly (Acrylic Acid) Grafted Pectin Hydrogels; Biosorption and Desorption Investigations. J Polym Environ 19, 431–439 (2011). https://doi.org/10.1007/s10924-011-0296-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-011-0296-2

Keywords

Navigation