Eco-Friendly, Vascular Shape and Interpenetrating Poly (Acrylic Acid) Grafted Pectin Hydrogels; Biosorption and Desorption Investigations

  • Mohammad M. Fares
  • Yahya R. Tahboub
  • Samar T. Khatatbeh
  • Yousef M. Abul-Haija
Original Paper


The synthesis and characterization of poly (acrylic acid) grafted pectin hydrogel followed by biosorption and desorption characteristics of cadmium, as a model heavy metal, have been studied. The grafted eco-friendly pectin based interpenetrating hydrogel was prepared in the presence of gluteraldehyde crosslinker under N2 atmosphere and characterized using 1H-NMR, FTIR, TGA and SEM techniques. Gluteraldehyde was found to form one-arm and two-arm crosslinks in the copolymer. Upon grafting, two-dimensional sheet structures bounded to tubular and vascular cylindrical rods were observed. The biosorption and desorption data, determined experimentally, were fitted to pseudo-second order reaction kinetics. At higher ionic strength values, the maximum metal uptake value (q max) was lowered and pseudo-second order rate constant (k 2) was increased. Whereas, at higher pH values the maximum metal uptake value (q max) was increased and Pseudo-second order rate constant (k 2) was decreased. 0.1 M HCl solution was a suitable eluent to regenerate the hydrogel surface and recover the adsorbed cadmium metal ions. Pectin based copolymer could be used as an efficient candidature biosorbent for the recovery of cadmium metal ions from aqueous solutions.


Vascular shape Poly (acrylic acid) grafted pectin hydrogel Eco-friendly Maximum metal uptake value (qmax



Jordan University of Science and Technology is acknowledged for this work.


  1. 1.
    Davidson MH, Dugan LL, Stocki J, Dicklin MR, Maki KC, Coletta F, Cotter R, McLeod M, Hoersten K (1998) J Nutr 128:1927Google Scholar
  2. 2.
    Chourasia MK, Jain SK (2004) Drug Delivery 11:129CrossRefGoogle Scholar
  3. 3.
    Liu L, Fishman ML, Kost J, Hicks KB (2003) Biomaterials 24:3333CrossRefGoogle Scholar
  4. 4.
    Sriamornsak P, Nunthanid J (1999) J Macroencapsul 16:303CrossRefGoogle Scholar
  5. 5.
    Fares MM, Assaf SM, Abul-Haija YM (2010) J Appl Polym Sci 117(4):1945Google Scholar
  6. 6.
    Kartel MT, Kupchik LA, Veisov BK (1999) Chemosphere 38:2591CrossRefGoogle Scholar
  7. 7.
    Khvan AM, Abduazimov KA (2001) Chem Nat Comp 37:388CrossRefGoogle Scholar
  8. 8.
    Kamnev AA, Ptichkina NM, Perfiliev YD, Shkodina OG, Ignatov VV (1995) J Inorg Biochem 59:340CrossRefGoogle Scholar
  9. 9.
    Harel P, Mignot L, Sauvage JP, Junter GA (1998) Ind Crop Prod 7:239CrossRefGoogle Scholar
  10. 10.
    Dronnet VM, Renard CM, Axelos MA, Thibault JF (1999) Carbohydr Polym 30:253CrossRefGoogle Scholar
  11. 11.
    Namasivayam C, Ranganathan K (1995) Environ Technol 16:851Google Scholar
  12. 12.
    Bailey SE, Olin TJ, Bricka RM, Adrian DD (1999) Water Res 33:2469CrossRefGoogle Scholar
  13. 13.
    Hegazy EA, Abd SE, Taleb MF, Dessouki AM (2004) J Appl Polym Sci 92:2642CrossRefGoogle Scholar
  14. 14.
    Inam R, Caykara T, Kantoglu O (2003) Nuc Inst Meth Phys Res B 208:400CrossRefGoogle Scholar
  15. 15.
    Inam R, Gumu Y, Caykara T (2004) J Appl Polym Sci 94:2401CrossRefGoogle Scholar
  16. 16.
    Ulusoy U, Symsek S, Ceyhan O (2003) Adsorption 9:165CrossRefGoogle Scholar
  17. 17.
    Rivas BL, Hernan AP, Maturana A, Villegas S (2001) Macromol Chem Phys 202:443CrossRefGoogle Scholar
  18. 18.
    Saraydin D, Karadag E, Guven O (2001) J Appl Polym Sci 79:1809CrossRefGoogle Scholar
  19. 19.
    Fares MM, Othman AA (2008) J Appl Polym Sci 110(5):2815CrossRefGoogle Scholar
  20. 20.
    Fares MM, Othman AA (2010) J Macromol Sci Part A: Pure Appl Chem 47(1):61CrossRefGoogle Scholar
  21. 21.
    Merlin DL, Sivasankar B (2009) Euro Polym J 45:165CrossRefGoogle Scholar
  22. 22.
    Culin J, Smit I, Andreis M, Veksli Z, Anzlovar A, Zigon M (2005) Polymer 46:89CrossRefGoogle Scholar
  23. 23.
    Zhang XZ, Wu DQ, Chu CC (2004) Biomaterials 25:3793CrossRefGoogle Scholar
  24. 24.
    Langer R (2003) N A Peppas AIChE J 49:2990CrossRefGoogle Scholar
  25. 25.
    Jeong B, Gutowska A (2002) Trends Biotechnol 20:305CrossRefGoogle Scholar
  26. 26.
    Renard CM, Crepeau MJ, Thibault JF (1995) Carbohydrate Res 275:155CrossRefGoogle Scholar
  27. 27.
    Volesky B (2003) Sorption and biosorption. BV-Sorbex,Inc., St. Lambert, QuebecGoogle Scholar
  28. 28.
    Mehta SK, Gaur JP (2005) Crit Rev Biotechnol 25:113CrossRefGoogle Scholar
  29. 29.
    Fares MM, El-faqeeh AS, Osman ME (2003) J Polym Res 10(2):119CrossRefGoogle Scholar
  30. 30.
    Swinkles JJM (1985) Starch conversion technology. Marcel Dekker, New York, p 30Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Mohammad M. Fares
    • 1
  • Yahya R. Tahboub
    • 1
  • Samar T. Khatatbeh
    • 1
  • Yousef M. Abul-Haija
    • 1
  1. 1.Department of Applied Chemistry, Faculty of Science and ArtsJordan University of Science and TechnologyIrbidJordan

Personalised recommendations