Skip to main content
Log in

Biodegradation of Poly(vinyl alcohol) and Bacterial Cellulose Composites by Aspergillus niger

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The ability of fungal strains to attack a composite material obtained from poly(vinyl alcohol) (PVA) and bacterial cellulose (BC) is investigated. The fungal strain tested was Aspergillus niger. This fungal strain was able to change not only the polymer surface from smoother to rougher, but also to disrupt the polymer. The degradation results were confirmed by visual observations, scanning electron microscopy (SEM) analyses, X-ray diffraction analyses and FTIR spectra of the film samples. SEM micrographs confirmed the growth of fungi on the composite film surface. The degree of microbial degradation depends on culture medium and on composition of polymeric materials, especially on PVA content. The biodegradation process is accelerated by the presence of glucose in the culture medium as an easily available carbon source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Fomin VA, Guzeev VV (2001) Prog Rubb Plastics Tech 17:186

    CAS  Google Scholar 

  2. Sinha Ray S, Bousmina M (2005) Prog Mat Sci 50:962

    Article  Google Scholar 

  3. Chiellini E, Corti A, D’Antone S, Solaro R (2003) Prog Polym Sci 28:963

    Article  CAS  Google Scholar 

  4. Sarti B, Scandola M (1995) Biomaterials 16:785

    Article  CAS  Google Scholar 

  5. Karthikeyan B (2005) Physica B 364:328

    Article  CAS  Google Scholar 

  6. Reis Rodrigues I, de Camargo Forte MM, Scherman Azambuja D, Castagno KRL (2007) Reac Funct Polym 67:708

    Article  Google Scholar 

  7. Sinha A, Das G, Sharma BK, Roy RP, Pramanick AK, Nayar S (2007) Mater Sci Eng C 27:70

    Article  CAS  Google Scholar 

  8. Tang S, Zou P, Xiong H, Tang H (2008) Carbohydr Polym 72:52

    Article  Google Scholar 

  9. Klemm D, Schumann D, Udhardt U, Marsch S (2001) Prog Polym Sci 126:156

    Google Scholar 

  10. George J, Ramana KV, Sabapathy SN, Bawa AS (2005) World J Microbiol Biotechnol 21:1323

    Article  CAS  Google Scholar 

  11. Czaja W, Krystynowicza A, Bieleckia S, Brown RM Jr (2006) Biomaterials 27:145

    Article  CAS  Google Scholar 

  12. Iguchi M, Yamanaka S, Budhiono A (2000) J Mater Sci 35:261

    Article  CAS  Google Scholar 

  13. Wan WK, Hutter JL, Millon L, Guhados G (2006) ACS Symp Ser 938:221

    Article  CAS  Google Scholar 

  14. Chiellini E, Corti A, Solaro R (1999) Polym Degrad Stab 64:305

    Article  CAS  Google Scholar 

  15. Chen J, Zhang Y, Du G-C, Hua Z-Z, Zhu Y (2007) Enzyme Microb Technol 40:1686

    Article  CAS  Google Scholar 

  16. Qian D, Du G, Chen J (2004) World J Microbiol Biotechnol 20:587

    Article  CAS  Google Scholar 

  17. Zhang Y, Li Y, Shen W, Liu D, Chen J (2006) World J Microbiol Biotechnol 22:625

    Article  CAS  Google Scholar 

  18. Upreti MC, Srivastava RB (2003) Curr Sci 84:1399

    CAS  Google Scholar 

  19. Jayasekara R, Harding I, Bowater I, Christie GBY, Lonergan G (2003) J Polym Environ 11:49

    Article  CAS  Google Scholar 

  20. Julinová M, Dvořáčková M, Kupec J, Hubáčková J, Kopčilová M, Hoffmann J, Alexy P, Nahálková A, Vaškova I (2008) J Polym Environ 16:241

    Article  Google Scholar 

  21. Yun Y-H, Wee Y-J, Byun H-S, Yoon S-D (2008) J Polym Environ 16:12

    Article  CAS  Google Scholar 

  22. Spiridon I, Popescu MC, Bodârlău R, Vasile C (2008) Polym Degrad Stab 93:1884

    Article  CAS  Google Scholar 

  23. Silva GGD, Sobral PJA, Carvalho RA, Bergo PVA, Mendieta-Taboada O, Habitante AMQB (2008) J Polym Environ 16:276

    Article  CAS  Google Scholar 

  24. Yun Y-H, Yoon S-D (2010) Polym Bull 64:553

    Article  CAS  Google Scholar 

  25. Lesinsky D, Fritz J, Braun R (2005) Bioresource Technol 96:197

    Article  CAS  Google Scholar 

  26. Jayasekara R, Harding I, Bowater I, Christie GBY, Lonergan GT (2003) J Polym Environ 11:49

    Article  CAS  Google Scholar 

  27. de Souza Costa-Júnior E, Pereira MM, Mansur HS (2009) J Mater Sci: Mater Med 20:553

    Article  Google Scholar 

  28. Kačuráková M, Smith AC, Gidley MJ, Wilson RH (2002) Carbohydr Res 337:1145

    Article  Google Scholar 

  29. Asran AS, Henning S, Michler GH (2010) Polymer 51:868

    Article  CAS  Google Scholar 

  30. Liua Y, Geeverb LM, Kennedy JE, Higginbothamb CL, Cahillc PA, McGuinnessa GB (2010) J Mech Behav Biomed Mat 3:203

    Article  Google Scholar 

  31. Klemenčič D, Simončič B, Tomšič B, Orel B (2010) Carbohydr Polym 80:427

    Google Scholar 

  32. Bhat NV, Nate MM, Kurup MB, Bambole VA, Sabharwal S (2005) Nuclear Instr Methods Physics Research B 237:585

    Article  CAS  Google Scholar 

  33. Badr Y, Mahmoud M (2006) Spectrochim Acta A Mol Biomol Spectrosc 65:584

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the project PNCDI II 32-115, financed by National Center for Programme Management (CNMP), Romania. Authors recognize also financial support from the European Social Fund through POSDRU/89/1.5/S/54785 project: “Postdoctoral Program for Advanced Research in the field of nanomaterials”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anicuta Stoica-Guzun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoica-Guzun, A., Jecu, L., Gheorghe, A. et al. Biodegradation of Poly(vinyl alcohol) and Bacterial Cellulose Composites by Aspergillus niger . J Polym Environ 19, 69–79 (2011). https://doi.org/10.1007/s10924-010-0257-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-010-0257-1

Keywords

Navigation