Journal of Polymers and the Environment

, Volume 19, Issue 1, pp 69–79 | Cite as

Biodegradation of Poly(vinyl alcohol) and Bacterial Cellulose Composites by Aspergillus niger

  • Anicuta Stoica-Guzun
  • Luiza Jecu
  • Amalia Gheorghe
  • Iuliana Raut
  • Marta Stroescu
  • Marius Ghiurea
  • Mihai Danila
  • Iuliana Jipa
  • Victor Fruth
Original Paper


The ability of fungal strains to attack a composite material obtained from poly(vinyl alcohol) (PVA) and bacterial cellulose (BC) is investigated. The fungal strain tested was Aspergillus niger. This fungal strain was able to change not only the polymer surface from smoother to rougher, but also to disrupt the polymer. The degradation results were confirmed by visual observations, scanning electron microscopy (SEM) analyses, X-ray diffraction analyses and FTIR spectra of the film samples. SEM micrographs confirmed the growth of fungi on the composite film surface. The degree of microbial degradation depends on culture medium and on composition of polymeric materials, especially on PVA content. The biodegradation process is accelerated by the presence of glucose in the culture medium as an easily available carbon source.


Biodegradation Bacterial cellulose Poly(vinyl alcohol) SEM analysis Fungi Aspergillus niger 



This study was supported by the project PNCDI II 32-115, financed by National Center for Programme Management (CNMP), Romania. Authors recognize also financial support from the European Social Fund through POSDRU/89/1.5/S/54785 project: “Postdoctoral Program for Advanced Research in the field of nanomaterials”.


  1. 1.
    Fomin VA, Guzeev VV (2001) Prog Rubb Plastics Tech 17:186Google Scholar
  2. 2.
    Sinha Ray S, Bousmina M (2005) Prog Mat Sci 50:962CrossRefGoogle Scholar
  3. 3.
    Chiellini E, Corti A, D’Antone S, Solaro R (2003) Prog Polym Sci 28:963CrossRefGoogle Scholar
  4. 4.
    Sarti B, Scandola M (1995) Biomaterials 16:785CrossRefGoogle Scholar
  5. 5.
    Karthikeyan B (2005) Physica B 364:328CrossRefGoogle Scholar
  6. 6.
    Reis Rodrigues I, de Camargo Forte MM, Scherman Azambuja D, Castagno KRL (2007) Reac Funct Polym 67:708CrossRefGoogle Scholar
  7. 7.
    Sinha A, Das G, Sharma BK, Roy RP, Pramanick AK, Nayar S (2007) Mater Sci Eng C 27:70CrossRefGoogle Scholar
  8. 8.
    Tang S, Zou P, Xiong H, Tang H (2008) Carbohydr Polym 72:52CrossRefGoogle Scholar
  9. 9.
    Klemm D, Schumann D, Udhardt U, Marsch S (2001) Prog Polym Sci 126:156Google Scholar
  10. 10.
    George J, Ramana KV, Sabapathy SN, Bawa AS (2005) World J Microbiol Biotechnol 21:1323CrossRefGoogle Scholar
  11. 11.
    Czaja W, Krystynowicza A, Bieleckia S, Brown RM Jr (2006) Biomaterials 27:145CrossRefGoogle Scholar
  12. 12.
    Iguchi M, Yamanaka S, Budhiono A (2000) J Mater Sci 35:261CrossRefGoogle Scholar
  13. 13.
    Wan WK, Hutter JL, Millon L, Guhados G (2006) ACS Symp Ser 938:221CrossRefGoogle Scholar
  14. 14.
    Chiellini E, Corti A, Solaro R (1999) Polym Degrad Stab 64:305CrossRefGoogle Scholar
  15. 15.
    Chen J, Zhang Y, Du G-C, Hua Z-Z, Zhu Y (2007) Enzyme Microb Technol 40:1686CrossRefGoogle Scholar
  16. 16.
    Qian D, Du G, Chen J (2004) World J Microbiol Biotechnol 20:587CrossRefGoogle Scholar
  17. 17.
    Zhang Y, Li Y, Shen W, Liu D, Chen J (2006) World J Microbiol Biotechnol 22:625CrossRefGoogle Scholar
  18. 18.
    Upreti MC, Srivastava RB (2003) Curr Sci 84:1399Google Scholar
  19. 19.
    Jayasekara R, Harding I, Bowater I, Christie GBY, Lonergan G (2003) J Polym Environ 11:49CrossRefGoogle Scholar
  20. 20.
    Julinová M, Dvořáčková M, Kupec J, Hubáčková J, Kopčilová M, Hoffmann J, Alexy P, Nahálková A, Vaškova I (2008) J Polym Environ 16:241CrossRefGoogle Scholar
  21. 21.
    Yun Y-H, Wee Y-J, Byun H-S, Yoon S-D (2008) J Polym Environ 16:12CrossRefGoogle Scholar
  22. 22.
    Spiridon I, Popescu MC, Bodârlău R, Vasile C (2008) Polym Degrad Stab 93:1884CrossRefGoogle Scholar
  23. 23.
    Silva GGD, Sobral PJA, Carvalho RA, Bergo PVA, Mendieta-Taboada O, Habitante AMQB (2008) J Polym Environ 16:276CrossRefGoogle Scholar
  24. 24.
    Yun Y-H, Yoon S-D (2010) Polym Bull 64:553CrossRefGoogle Scholar
  25. 25.
    Lesinsky D, Fritz J, Braun R (2005) Bioresource Technol 96:197CrossRefGoogle Scholar
  26. 26.
    Jayasekara R, Harding I, Bowater I, Christie GBY, Lonergan GT (2003) J Polym Environ 11:49CrossRefGoogle Scholar
  27. 27.
    de Souza Costa-Júnior E, Pereira MM, Mansur HS (2009) J Mater Sci: Mater Med 20:553CrossRefGoogle Scholar
  28. 28.
    Kačuráková M, Smith AC, Gidley MJ, Wilson RH (2002) Carbohydr Res 337:1145CrossRefGoogle Scholar
  29. 29.
    Asran AS, Henning S, Michler GH (2010) Polymer 51:868CrossRefGoogle Scholar
  30. 30.
    Liua Y, Geeverb LM, Kennedy JE, Higginbothamb CL, Cahillc PA, McGuinnessa GB (2010) J Mech Behav Biomed Mat 3:203CrossRefGoogle Scholar
  31. 31.
    Klemenčič D, Simončič B, Tomšič B, Orel B (2010) Carbohydr Polym 80:427Google Scholar
  32. 32.
    Bhat NV, Nate MM, Kurup MB, Bambole VA, Sabharwal S (2005) Nuclear Instr Methods Physics Research B 237:585CrossRefGoogle Scholar
  33. 33.
    Badr Y, Mahmoud M (2006) Spectrochim Acta A Mol Biomol Spectrosc 65:584CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Anicuta Stoica-Guzun
    • 1
  • Luiza Jecu
    • 2
  • Amalia Gheorghe
    • 2
  • Iuliana Raut
    • 2
  • Marta Stroescu
    • 1
  • Marius Ghiurea
    • 2
  • Mihai Danila
    • 3
  • Iuliana Jipa
    • 1
  • Victor Fruth
    • 4
  1. 1.University Politehnica of Bucharest, Faculty of Applied Chemistry and Material ScienceBucharestRomania
  2. 2.National Research and Development Institute for Chemistry and Petrochemistry—ICECHIMBucharestRomania
  3. 3.Institute of Micro Technology (IMT)BucharestRomania
  4. 4.Institute of Physical Chemistry (ICF)BucharestRomania

Personalised recommendations