Journal of Polymers and the Environment

, Volume 19, Issue 1, pp 59–68 | Cite as

Thermal and Biodegradable Properties of Poly(l-lactide)/Poly(ε-Caprolactone) Compounded with Functionalized Organoclay

  • Qifang Li
  • Jin-San Yoon
  • Guang-Xin Chen
Original Paper


Poly(l-lactide) (PLLA)/Poly(ε-caprolactone) (PCL) blends were compounded with commercially available organoclay Cloisite 25A (C25A) and C25A functionalized with epoxy groups, respectively. Epoxy groups on the surface of C25A were introduced by treating C25A with (glycidoxypropyl)trimethoxy silane (GPS) to produce so called Functionalized Organoclay (F-C25A). The silicate layers of PLLA/PCL/F-C25A were exfoliated to a larger extent than PLLA/PCL/C25A. Incorporation of the epoxy groups on C25A improved significantly mechanical properties of PLLA/PCL/C25A. The larger amount of exfoliation of the silicate layers in PLLA/PCL/F-C25A as compared with that in PLLA/PCL/C25A was attributed to the increased interfacial interaction between the polyesters and the clay due to chemical reaction. Thermo gravimetric analysis revealed that the nanocomposites with exfoliated silicate layers were more thermally stable than those with intercalated silicate layers. The biodegradability of the neat PLLA/PCL and corresponding nanocomposite was studied under compost, and the rate of biodegradation of PLLA/PCL increased after nanocomposite preparation.


Poly(l-lactide) Poly(ε-caprolactone) Clay Functionalization Biodegradation 



The authors gratefully acknowledge financial support of this work coming from Natural Science Foundation of China (NSFC) (No. 21074009) and Young Foundation of Beijing University of Chemical Technology.


  1. 1.
    Bordes P, Pollet E, Averous L (2009) Prog Polym Sci 34:125–155CrossRefGoogle Scholar
  2. 2.
    Okada A, Usuki A (2006) Macromol Mater Eng 291:1449–1476CrossRefGoogle Scholar
  3. 3.
    Tjong SC (2006) Mater Sci Eng R 53:73–197CrossRefGoogle Scholar
  4. 4.
    Goettler LA, Lee KY, Thakkar H (2007) Polym Rev 47:291–317CrossRefGoogle Scholar
  5. 5.
    Ray SS, Bousmina M (2005) Prog Mater Sci 50:962–1079CrossRefGoogle Scholar
  6. 6.
    Pavlidou S, Papaspyrides CD (2008) Prog Polym Sci 33:1119–1198CrossRefGoogle Scholar
  7. 7.
    Boo WJ, Liu J, Sue HJ (2006) Mater Sci Technol 22:829–834CrossRefGoogle Scholar
  8. 8.
    Chen BQ, Evans JRG (2009) Soft Matter 5:3572–3584CrossRefGoogle Scholar
  9. 9.
    Chen GX, Hao GJ, Guo TY, Song MD, Zhang BH (2002) J Mater Sci Lett 21:1587–1589CrossRefGoogle Scholar
  10. 10.
    Chen GX, Kim HS, Park BH, Yoon JS (2006) Polymer 47:4760–4767CrossRefGoogle Scholar
  11. 11.
    Choudalakis G, Gotsis AD (2009) Eur Polym J 45:967–984CrossRefGoogle Scholar
  12. 12.
    Seki Y, Okada T, Ogawa M (2009) Microporous Mesoporous Mater 124:30–35CrossRefGoogle Scholar
  13. 13.
    Herrera-Alonso JM, Marand E, Little JC, Cox SS (2009) J Membr Sci 337:208–214CrossRefGoogle Scholar
  14. 14.
    Srinath G, Gnanamoorthy R (2007) Compos Sci Technol 67:399–405CrossRefGoogle Scholar
  15. 15.
    Chen GX, Yoon JS (2005) J Polym Sci Part B Polym Phys 43:478–487CrossRefGoogle Scholar
  16. 16.
    Chen GX, Yoon JS (2005) Polym Degrad Stab 88:206–212CrossRefGoogle Scholar
  17. 17.
    Zhang XG, Loo LS (2009) Polymer 50:2643–2654CrossRefGoogle Scholar
  18. 18.
    Chen GX, Kim HS, Shim JH, Yoon JS (2005) Macromolecules 38:3738–3744CrossRefGoogle Scholar
  19. 19.
    Chen GX, Choi JB, Yoon JS (2005) Macromol Rapid Commun 26:183–187CrossRefGoogle Scholar
  20. 20.
    Krishnamoorti R, Vaia RA, Giannelis EP (1996) Chem Mater 8:1728–1734CrossRefGoogle Scholar
  21. 21.
    Usuki A, Hasegawa N, Kato M (2005) Adv Polym Sci 179:135–195Google Scholar
  22. 22.
    Ray SS, Okamoto M (2003) Prog Polym Sci 28:1539–1641CrossRefGoogle Scholar
  23. 23.
    Zhang JG, Manias E, Wilkie CA (2008) J Nanosci Nanotechnol 8:1597–1615CrossRefGoogle Scholar
  24. 24.
    Behling RE, Williams BA, Staade BL, Wolf LM, Cochran EW (2009) Macromolecules 42:1867–1872CrossRefGoogle Scholar
  25. 25.
    Fukushima K, Tabuani D, Camino G (2009) Mater Sci Eng C 29:1433–1441CrossRefGoogle Scholar
  26. 26.
    Yu ZY, Yin JB, Yan SF, Xie YT, Ma J, Chen XS (2007) Polymer 48:6439–6447CrossRefGoogle Scholar
  27. 27.
    Sabet SS, Katbab AA (2009) J Appl Polym Sci 111:1954–1963CrossRefGoogle Scholar
  28. 28.
    Gelfer MY, Song HH, Liu L, Hsiao BS, Chu B, Rafailovich M et al (2003) J Polym Sci Part B Polym Phys 41:44–54CrossRefGoogle Scholar
  29. 29.
    Ellis B (1993) Chemistry and technology of epoxy resins Glasgow. Blackie Academic & Professional, UKGoogle Scholar
  30. 30.
    Masenelli-Varlot K, Reynaud E, Vigier G, Varlet J (2002) J Polym Sci Part B Polym Phys 40:272–283CrossRefGoogle Scholar
  31. 31.
    Pinnavaia TJ, Beall GW (2001) Polymer-clay nanocomposites. Wiley, Chichester, UKGoogle Scholar
  32. 32.
    Zanetti M, Camino G, Mülhaupt R (2001) Polym Degrad Stab 74:413–417CrossRefGoogle Scholar
  33. 33.
    Paul M-A, Alexandre M, Degée P, Henrist C, Rulmont A, Dubois P (2003) Polymer 44:443–450CrossRefGoogle Scholar
  34. 34.
    Kim HY, Jeong U, Kim JK (2003) Macromolecules 36:1594–1602CrossRefGoogle Scholar
  35. 35.
    Horowitz HH, Metzger G (1963) Anal Chem 35:1464–1468CrossRefGoogle Scholar
  36. 36.
    Lunt J (1998) Polym Degrad Stab 59:145–152CrossRefGoogle Scholar
  37. 37.
    Sinha Ray S, Okamoto K, Yamada K, Okamoto M (2002) Nano Lett 2:423–425CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Key Laboratory on Preparation and Processing of Novel Polymer Materials of BeijingBeijing University of Chemical TechnologyBeijingChina
  2. 2.Department of Polymer Science and EngineeringInha UniversityIncheonKorea

Personalised recommendations