Advertisement

Journal of Polymers and the Environment

, Volume 18, Issue 4, pp 567–575 | Cite as

Double-Melting Behavior of Bamboo Fiber/Talc/Poly (Lactic Acid) Composites

  • Q. F. Shi
  • H. Y. Mou
  • L. Gao
  • J. Yang
  • W. H. Guo
Original Paper

Abstract

The melting and crystallization behavior of pure poly (lactic acid) (PLA) and PLA composites (1% Bamboo Fiber (BF)/PLA, 1% Talc/PLA, 1% BF/1% Talc/PLA) were studied with differential scanning calorimetry (DSC). DSC curves for PLA composites were obtained at various cooling rates, the crystallization temperature and heat of crystallization of PLA composites decreased almost linearly with increasing of log (cooling rate). Moreover, BF has minor effect and talc has the great effect on the crystallization temperature in the PLA composites. With increasing of cooling rate, the main melting temperature of PLA composites decreased. In pure PLA and 1% BF/PLA, the double-melting behavior appeared in the heating curves after slow rate of cooling, and there was the opposite phenomenon of double-melting behavior in other two PLA composites. BF promotes forming the imperfect crystal in the PLA composites during heating process. With increasing of heating rate, the main melting temperature of PLA composites increased except the 1% BF/PLA. At various heating rates, the defects of BF structure promoted the melt-recrystallization and talc promoted forming the small crystals. At last, the recrystallization model was given.

Keywords

Poly (lactic acid) (PLA) Differential scanning calorimetry (DSC) Bamboo fiber (BF) Talc Melt-recrystallization 

Notes

Acknowledgments

The authors sincerely acknowledge the National Key Technology R&D Program of China (2008BAC46B10), Shanghai Leading Academic Discipline Project (B502) and Shanghai Key Laboratory Project (08DZ2230500).

References

  1. 1.
    Suprakas SR, Kazunobu Y, Masami O, Youhei F, Akinobu O, Kazue U (2003) Polymer 44:6633–6646CrossRefGoogle Scholar
  2. 2.
    Masud SH, Lawrence TD, Amar KM, Manjusri M (2006) Compos Sci Technol 66:1813–1824CrossRefGoogle Scholar
  3. 3.
    Kuan CF, Chen CH, Kuan HC, Lin KC, Chiang CL, Peng HC (2008) J Phys Chem Solids 69:1399–1402CrossRefGoogle Scholar
  4. 4.
    Huda MS, Drzal LT, Mohanty AK, Misra M (2008) Compos Sci Technol 68:424–432CrossRefGoogle Scholar
  5. 5.
    Graupner N, Herrmann AS, Mussig J (2009) Compos Part A-Appl S 40:810–821CrossRefGoogle Scholar
  6. 6.
    Srebrenkoska V, Gaceva GB, Avella M, Errico ME, Gentile G (2008) Polym Int 57:1252–1257CrossRefGoogle Scholar
  7. 7.
    Tan SS, Su AH, Li WH, Zhou EL (2000) J Polym Sci Pol Phys 38:53–60CrossRefGoogle Scholar
  8. 8.
    Munehisa Y, Shinsuke T, Takahiro M (2000) J Polym Sci Pol Phys 38:262–272CrossRefGoogle Scholar
  9. 9.
    Sauer BB, Kampert WG, Neal Blanchard E, Threefoot SA, Hsiao BS (2000) Polymer 41:1099–1108CrossRefGoogle Scholar
  10. 10.
    Todoki M, Kawaguchi T (1977) J Polym Sci Pol Phys 15:1067–1075CrossRefGoogle Scholar
  11. 11.
    Munehisa Y, Tadashi S (2002) J Polym Sci Pol Phys 40:2411–2488CrossRefGoogle Scholar
  12. 12.
    Munehisa Y, Shinsuke T, Youhei S, Chitoshi N (2004) J Polym Sci Pol Phys 42:25–32CrossRefGoogle Scholar
  13. 13.
    Yaming W, Joao FM (2005) Eur Polym J 41:2335–2342CrossRefGoogle Scholar
  14. 14.
    Yoshitsugu O, Kenji O, Akiyoshi K (2003) J Macromol Sci Phys 42:875–888CrossRefGoogle Scholar
  15. 15.
    Munehisa Y, Shinsuke T, Youhei S, Chitoshi N (2004) J Polym Sci Pol Phys 42:25–32CrossRefGoogle Scholar
  16. 16.
    Munehisa Y, Shinsuke T, Kazuhito O, Shin’ichi T (2001) J Polym Sci Pol Phys 39:2005–2015CrossRefGoogle Scholar
  17. 17.
    Ryoko T, Duc MV, Kazuya O, Tatsuya T, Toru F, Takayasu F (2008) J Mater Sci 43:775–787Google Scholar
  18. 18.
    Shih YF, Lee WC, Jeng RJ, Huang CM (2006) J Appl Polym Sci 99:188–199CrossRefGoogle Scholar
  19. 19.
    Cheng S, Lau KT, Liu T, Zhao YQ, Lam PM, Yin YS (2009) Compos Part B-Eng 40:650–654CrossRefGoogle Scholar
  20. 20.
    Rafler G, Dahlmann J, Wiener K (1990) Acta Polym 41:328–335CrossRefGoogle Scholar
  21. 21.
    Tadalazu M, Toru M (1998) Polymer 39:5515–5521CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Q. F. Shi
    • 1
  • H. Y. Mou
    • 1
  • L. Gao
    • 1
  • J. Yang
    • 1
  • W. H. Guo
    • 1
  1. 1.Polymer Alloy Lab, Key Laboratory for Preparation and Application of Ultrafine Materials of Ministry of Education, School of Material Science and EngineeringEast China University of Science and TechnologyShanghaiChina

Personalised recommendations