Journal of Polymers and the Environment

, Volume 18, Issue 4, pp 634–637 | Cite as

A Simple Assay for Monitoring Cellulose in Paper-Spiked Soil

Original Paper


We describe a simple method for measuring cellulose in soil. We used this method to measure the recovery of shredded office paper and pure medium fiber cellulose added to a Helvetia silt loam clay soil. This method consists of solvating cellulose from soil with 77% H2SO4 and analysis of the cellulose recovered by the phenol-sulfuric acid carbohydrate assay. Unlike previous related methods the modifications we propose allow good recovery of cellulose (~99%) and eliminate the need to autoclave the samples. We verified this method on soil spiked with up to 12% cellulose and found a good linear relationship between the amounts of cellulose added relative to that recovered. With proper fragmentation and dilution of the acid-treated soil samples, higher concentrations can be easily measured. We propose this technique as a robust and high throughput means to monitor the degradation of cellulose in paper spiked soil.


Cellulose Soil Method Phenol-sulfuric acid 



We thank Portland State University and Bokashicycle LLC for support.


  1. 1.
    Walchli O (1978) Material und Organismen 13:101Google Scholar
  2. 2.
    Maskova HP, Kunc F (1988) Folia Microbiol 33:474CrossRefGoogle Scholar
  3. 3.
    Fontaine S, Bardoux G, Benest D, Verdier B, Mariotti A, Abbadie L (2004) Soil Sci Soc Am J 68:125CrossRefGoogle Scholar
  4. 4.
    Pang H, Zhang P, Duan CJ, Mo XC, Tang JL, Feng JX (2009) Curr Microbiol 58:404CrossRefGoogle Scholar
  5. 5.
    Dennis VM, Winfield BA (1977) Compost Sci 18:27Google Scholar
  6. 6.
    Safarik I, Santruckova H (1992) Plant Soil 143:109CrossRefGoogle Scholar
  7. 7.
    Xiang Q, Lee YY, Pettersson PO, Torget RW (2003) Appl Biochem Biotechnol 107:505CrossRefGoogle Scholar
  8. 8.
    Dubois M, Giles KA, Hamilton JK, Rebers PA, Smith F (1956) Anal Chem 28:350CrossRefGoogle Scholar
  9. 9.
    Liu D, Wong PTS, Dutka BJ (1973) Water Res 7:741CrossRefGoogle Scholar
  10. 10.
    Brink RH Jr, Dubach P, Lynch DC (1960) Soil Sci 89:157CrossRefGoogle Scholar
  11. 11.
    Cheshire MV, Mundie MC (1966) J Soil Sci 17:372CrossRefGoogle Scholar
  12. 12.
    Cheshire MV, Sparling GP, Mundie MC (1984) Plant Soil 76:339CrossRefGoogle Scholar
  13. 13.
    Martens DA, Loeffelmann KL (2002) Soil Biol Biochem 34:1393CrossRefGoogle Scholar
  14. 14.
    Thomas RL, Lynch DL (1961) Soil Sci 91:312CrossRefGoogle Scholar
  15. 15.
    Tabatabai MA, Bremner JM (1970) Soil Sci Soc Am J 34:608CrossRefGoogle Scholar
  16. 16.
    Manning DAC, Lopez-Capel E, Barker S (2005) Miner Mag 69:425CrossRefGoogle Scholar
  17. 17.
    Walkley A, Black IA (1934) Soil Sci 37:29CrossRefGoogle Scholar
  18. 18.
    Tinsley J (1950) In: Hoitsemo Brothers (eds) Trans. 4th Int. Congr. Soil Sci. Determination of organic carbon in soils by dichromate mixtures, Groningen, The Netherlands, vol 1, pp 161–169Google Scholar
  19. 19.
    Mebius LJ (1960) Anal Chim Acta 22:120CrossRefGoogle Scholar
  20. 20.
    Nelson DW, Sommers LE (1996) In: Sparks DL (ed) Total carbon organic carbon and organic matter. Methods of soil analysis Part 3, Chap. 34. Chemical Methods Soil Science Society of America and American Society of AgronomyGoogle Scholar
  21. 21.
    Kim JS, Lee YY, Torget RW (2001) Appl Biochem Biotechnol 91–93:331CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.TGA LLCLake OswegoUSA
  2. 2.Biology DepartmentPortland State UniversityPortlandUSA

Personalised recommendations