Journal of Polymers and the Environment

, Volume 18, Issue 4, pp 558–566 | Cite as

Rheological and Thermal Properties of the PLA Modified by Electron Beam Irradiation in the Presence of Functional Monomer

  • Boo Young Shin
  • Do Hung Han
  • Ramani Narayan
Original Paper


Polylactic acid (PLA) has been modified by electron beam radiation in the presence of glycidyl methacrylate (GMA) to enhance the melt strength of PLA. The modified PLA was prepared by varying both the amount of GMA and the irradiation dose and was characterized by observing the thermal properties, the melt viscoelastic properties and the gel fraction. For comparison, virgin PLA was also irradiated. All irradiated virgin PLA had a lower complex viscosity and a storage modulus compared to virgin PLA due to irradiation-induced chain scission. However, these properties were remarkably improved due to formation of long chain branching and retarding chain scission if GMA was introduced in this system. The increase in melt viscoelastic property was much dependent on the irradiation dose. At optimum doses of radiation, it showed maximum complex viscosity and storage modulus. The PLA irradiated with 20 kGy in the presence of 3 phr GMA showed a complex viscosity of about 10 times higher and a storage modulus of 100 times higher than those of virgin PLA at 0.1 rad/s. Gel fraction measurement revealed that chain scission and branching was more dominant than crosslinking. The biodegradability of irradiated PLA was slightly decreased by the presence of GMA.


Poly (lactic acid) Glycidyl methacrylate Electron beam Rheological properties Biodegradability 



This research was supported by the Yeungnam University research grants in 2008.


  1. 1.
    Carlson D, Dubois P, Narayan R (1998) Polym Eng Sci 38(2):311–321CrossRefGoogle Scholar
  2. 2.
    Richard E, Rizvi R, Chow A, Naguib H (2008) J Polym Environ 16:258–266CrossRefGoogle Scholar
  3. 3.
    Lee IR, Chun SW, Kang HJ (2003) Polymer (Korea) 27:285–292Google Scholar
  4. 4.
    Hogt AH, Meijer J, Jelenic J (1996) In: Al-Malaik S (ed) Reactive modifiers for polymers. BLAKIE ACADEMIC & PROFESSIONAL, pp. 84–132Google Scholar
  5. 5.
    Meister JJ (2000) Polymer modification: principles, techniques, and applications. Dekker Inc., New YorkGoogle Scholar
  6. 6.
    Kim DJ, Kang HJ, Seo KH (2001) J Appl Polym Sci 81:637–645CrossRefGoogle Scholar
  7. 7.
    Kim DJ, Kim WS, Lee DH, Min KE, Kang IK, Jeon IR, Seo KH (2001) J Appl Polym Sci 81:1115–1124CrossRefGoogle Scholar
  8. 8.
    Södergárd A, Niemi M, Selin JF, Näsman H (1995) Ind Eng Chem Res 34:1203–1207CrossRefGoogle Scholar
  9. 9.
    Di Y, Iannace S, Maio ED, Nicolais L (2005) Macromol Mater Eng 290:1083–1090CrossRefGoogle Scholar
  10. 10.
    Ho K-L G, Pometo A L III (1999) J Environ Polym Degrad 7:93–100CrossRefGoogle Scholar
  11. 11.
    Han DH, Jang JH, Kim HY, Kim BN, Shin BY (2006) Polym Eng Sci 46:431–437CrossRefGoogle Scholar
  12. 12.
    Han DH, Shin SH, Petrov S (2004) Radiat Phys Chem 69:239–244CrossRefGoogle Scholar
  13. 13.
    Darwis D, Nishimura K, Mitomo H, Yosh F (1999) J Appl Polym Sci 74:1815–1820CrossRefGoogle Scholar
  14. 14.
    Yoshii F, Darwis D, Mitimo H, Makuuchi K (2000) Radiat Phys Chem 57:417–420CrossRefGoogle Scholar
  15. 15.
    Yoshii F, Suhartini M, Nagasawa N, Mitomo H, Kime T (2003) Nucl Instrum Methods Phys Res B 208:370–373CrossRefGoogle Scholar
  16. 16.
    Gupta MC, Deshmukh VG (1983) Polymer 24:827–830CrossRefGoogle Scholar
  17. 17.
    Shin BY, Lee SI, Shin YS, Balakrishnan S, Narayan R (2004) Polym Eng Sci 44:1429–1438CrossRefGoogle Scholar
  18. 18.
    Jamshidi K, Hyon SH, Ikada Y (1988) Polymer 29:2229–2234CrossRefGoogle Scholar
  19. 19.
    Wang XS, Yan D, Tian GH, Li XG (2001) Polym Eng Sci 41:1655–1664CrossRefGoogle Scholar
  20. 20.
    Yilmazer Y, Xanthos M, Bayram G, Tan V (2000) J Appl Polym Sci 75:1371–1377CrossRefGoogle Scholar
  21. 21.
    Kim ES, Kim BC, Kim SH (2004) J Polym Sci B 42:939–946CrossRefGoogle Scholar
  22. 22.
    Harrell ER, Nakajima N (1984) J Appl Polym Sci 29:995–1010CrossRefGoogle Scholar
  23. 23.
    Scaffaro R, La Mantia FP, Botta L, Morreale N, Dintcheva NT, Mariani P (2009) Polym Eng Sci 49:1316–1325CrossRefGoogle Scholar
  24. 24.
    Cleland MR, Park LA, Cheng S (2003) Nucl Instrum Methods Phys Res B 208:66–73CrossRefGoogle Scholar
  25. 25.
    Park JW, Im SS (2000) Polym Eng Sci 40:2539–2550CrossRefGoogle Scholar
  26. 26.
    Barroso VC, Maia JM (2005) Polym Eng Sci 45:984–997CrossRefGoogle Scholar
  27. 27.
    Parmar HB, Gupta RK, Bhattacharya SN (2009) Polym Eng Sci 49:1806–1813CrossRefGoogle Scholar
  28. 28.
    Wang X, Tzoganakis C, Rempel GL (1996) J Appl Polym Sci 61:1395–1404CrossRefGoogle Scholar
  29. 29.
    Wild L, Ranganath R, Knobeloch DC (1976) Polym Eng Sci 16:811–816CrossRefGoogle Scholar
  30. 30.
    Chae DW, Lee KH, Kim BC (2006) J Polym Sci B 44:371–377CrossRefGoogle Scholar
  31. 31.
    Chae HG, Kim BC, Im SS, Han YK (2001) Polym Eng Sci 41:1133–1139CrossRefGoogle Scholar
  32. 32.
    Xanthos M, Yilmazer U, Dey SK, Quintans J (2000) Polym Eng Sci 40:554–566CrossRefGoogle Scholar
  33. 33.
    Jeong BJ, Xanthos M (2007) Polym Eng Sci 47:244–253CrossRefGoogle Scholar
  34. 34.
    Di Y, Iannace S, Maio ED, Nicolais L (2005) J Polym Sci B 43:689–698CrossRefGoogle Scholar
  35. 35.
    Lefebvre F, David C, Wauven CV (1994) Polym Defrad Stabil 45:347–353CrossRefGoogle Scholar
  36. 36.
    Quynh TM, Mitomo H, Nagasawa N, Wada Y, Yoshii F, Tamada M (2007) Europ Polym J 43:1779–1785CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.School of Display and Chemical EngineeringYeungnam UniversityGyeongsanKorea
  2. 2.Department of Chemical Engineering and Material ScienceMichigan State UniversityEast LansingUSA

Personalised recommendations