Adhesion Properties of Adhesive Prepared from Waste Polystyrene

  • A. M. Issam
  • B. T. Poh
  • H. P. S. Abdul Khalil
  • W. C. Lee
Original Paper


Solid and soft forms of waste polystyrene have been treated with coumarone–indene resin and benzene to produce a new adhesive. The adhesive is prepared from various compositions of polystyrene (13–38 wt%), coumarone-indene resin (5–7%) and benzene (57–80%). Viscosity, peel strength and tensile shear strength of the adhesive is determined by a HAAKE Rotary Viscometer, Lloyd Adhesion Tester and Instron machine, respectively. Rolling ball technique was used to measure the tackiness of the adhesive. Results show that the adhesion property increases with increase in polystyrene composition and coating thickness. This observation is attributed to the increasing wettability of adhesive on the substrate.


Polystyrene Adhesive Adhesion Properties 



The authors would like to thank Universiti Sains Malaysia for supporting this research.


  1. 1.
    Thompsett DJ, Walker A, Radley RJ, Grieveson BM (1996) Design and construction of expanded polystyrene embankments, practical design methods as used in the United Kingdom. Constr Build Mater 9(6):403–411CrossRefGoogle Scholar
  2. 2.
    Norwegian Public Roads Administration (2000) Long-term performance and durability of EPS as a lightweight fill. Nordic Road Transp Res 1:4–7Google Scholar
  3. 3.
    Gnip I, Kersulis V, Vaitkus S, Vejelis S (2004) Assessment of strength under compression of expanded polystyrene (EPS) slabs. Mater Sci (Medžiagotyra) 10(4):326–329Google Scholar
  4. 4.
    Fehr M, de Castro MSMV, Calcado MdR (2000) A practical solution to the problem of household waste management in Brazil. Resour Conserv Recycl 30:245–257CrossRefGoogle Scholar
  5. 5.
    Tanskanen JH (2000) Strategic planning of municipal solid waste management. Resour Conserv Recycl 30:111–133CrossRefGoogle Scholar
  6. 6.
    Li XD, Poon CS, Lee SC, Chung SS, Luk F (2003) Waste reduction and recycling strategies for the in-flight services in the airline industry. Resour Conserv Recycl 37:87–99CrossRefGoogle Scholar
  7. 7.
    Fortelný I, Michálková D, Kruliš Z (2004) An efficient method of material recycling of municipal plastic waste. Polym Degrad Stab 85:975–979CrossRefGoogle Scholar
  8. 8.
    Guoxi X, Rui L, Qinhu T, Jinghua L (1999) J Appl Polym Sci 73:1139CrossRefGoogle Scholar
  9. 9.
    Huang F-C, Ke C-H, Kao C-Y, Lee W-C (2001) J Appl Polym Sci 80:39CrossRefGoogle Scholar
  10. 10.
    Sato S, Murakata T, Baba S, Saito Y, Watanabe S (1990) Solvent effect on thermal degradation of polystyrene. J Appl Polym Sci 40:2065–2071CrossRefGoogle Scholar
  11. 11.
    de la Puente G, Sedran U (1998) Recycling polystyrene into fuels by means of FCC: performance of various acidic catalysts. Appl Catal B 19:305–311CrossRefGoogle Scholar
  12. 12.
    Bajdur W, Pajaczkowska J, Makarucha B, Sulkowska A, Sulkowski WW (2002) Eur Polym J 38:299CrossRefGoogle Scholar
  13. 13.
    Poh BT, Chang YY (2006) Polym-Plast Technol Eng 45:251–1256CrossRefGoogle Scholar
  14. 14.
    Poh BT, Chow SK (2007) J Appl Polym Sci 106:333–337CrossRefGoogle Scholar
  15. 15.
    Satas D (ed) (1982) Handbook of pressure-sensitive adhesive technology. Van Nostrand Reinhold, New YorkGoogle Scholar
  16. 16.
    Poh BT, Kwo HK (2007) Polym-Plast Technol Eng 46:1021–1024Google Scholar
  17. 17.
    Dahlquist CA (2000) The theory of adhesion, coating technology handbook. Marcel Dekker, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • A. M. Issam
    • 1
  • B. T. Poh
    • 1
  • H. P. S. Abdul Khalil
    • 1
  • W. C. Lee
    • 1
  1. 1.School of Industrial TechnologyUniversiti Sains MalaysiaPenangMalaysia

Personalised recommendations