Journal of Polymers and the Environment

, Volume 17, Issue 1, pp 34–48 | Cite as

Wood Modification Effects on Weathering of HDPE-Based Wood Plastic Composites

  • James S. Fabiyi
  • Armando G. McDonald
  • David McIlroy
Original Paper


The effects of weathering on the constituents of wood and polymer matrix behavior in wood plastic composites (WPCs) were investigated. WPCs were produced from pine, extractives-free pine, and pine holocellulose fibers (60%) together with HDPE (40%). These composites were subjected to xenon-arc accelerated and outside weathering for a total of 1200 h and 120 days, respectively. The color and chemical changes that occurred on the surface of the WPCs were analyzed using a set of analytical techniques. For pine and extractive-free pine filled composites, the results showed that the total color change, lightness, and oxidation increased, while the lignin content decreased. In addition, the weight average molecular weight (Mw) and number average molecular weight (Mn) of extracted HDPE decreased with an increase in exposure time of the composites. However, HDPE crystallinity increased with longer exposure time. Lightness of holocellulose-based WPC changed the least while the change in its HDPE crystallinity was not significant compared to the other composite types. Therefore, holocellulose-based WPC may be preferred for applications where color stability is of high priority.


Wood plastic composite Molecular weight Crystallinity Wood loss Pine Extractive free wood Holocellulose 



The authors sincerely acknowledge (i) funding by a grant from the USDA Forest Products Laboratory, (ii) the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service (grant number 2005-35103-15243) provided support for the FT-IR spectrometer, (iii) Drs. Michael Wolcott and Karl Englund for technical assistance, and (iv) Gary Stark and Clay Enos for GPC analysis at Equistar Company, and Tony Poloso for GPC analysis at ExxonMobil Chemicals.


  1. 1.
    Clemons C (2002) For Prod J 52:10–18Google Scholar
  2. 2.
    Smith PM, Wolcott MP (2005) In: Proceedings of the 8th international conference on woodfiber-plastic composites, Madison, WI, pp 335–343, May 23–25Google Scholar
  3. 3.
    Klyosov A (2006) In: Proceeding progress in wood and bio-fibre plastic composites international conference, TorontoGoogle Scholar
  4. 4.
    Stark NM, Matuana LM (2004) Polym Degrad Stab 86:1–9CrossRefGoogle Scholar
  5. 5.
    Stark NM, Matuana LM, Clemons CM (2004) J Appl Polym Sci 93:1021–1030CrossRefGoogle Scholar
  6. 6.
    Stark NM, Matuana LM (2006) Polym Degrad Stab 91:3048–3056CrossRefGoogle Scholar
  7. 7.
    Muasher M, Sain M (2006) Polym Degrad Stab 91:1156–1165CrossRefGoogle Scholar
  8. 8.
    Stark NM, Matuana LM (2007) Polym Degrad Stab 92:1883–1890CrossRefGoogle Scholar
  9. 9.
    Fabiyi JS, McDonald AG, Wolcott MP (2005) In: Proceeding of the 8th international conference on woodfiber-plastic composites, Madison, WI, pp 191–196, May 23–25Google Scholar
  10. 10.
    Sears KD, Jacobson R, Caulfield DF, Underwood J (2001) In: Proceedings of the 6th International Confrence on Wood-plastic composites, Madison, WI, pp 27–34Google Scholar
  11. 11.
    Philip M, Attwood J, Hulme A, Williams G, Shipton P (2004) The waste and resources action programme, p 113Google Scholar
  12. 12.
    Torik AA, Shirakawa H, Nagaya S (1990) J Appl Polym Sci 40:1637–1646CrossRefGoogle Scholar
  13. 13.
    Isasi JR, Mandelkern L, Galante MAJ, Alamo RG (1999) J Polym Sci Part B: Polym Phys 37:323–334CrossRefGoogle Scholar
  14. 14.
    Technical Association of Pulp and Paper Industry (TAPPI T 204 om-88) (1996) Atlanta, Georgia, pp 1–3Google Scholar
  15. 15.
    Wise LE, Murphy M, D’ Addireco AA (1946) Paper Trade J 122:35–43Google Scholar
  16. 16.
    American Society Testing and Materials (ASTM D 790-00) (2001) Annual book of ASTM standards. Conshohocken, PA, 08(01):145–153Google Scholar
  17. 17.
    American Society Testing and Materials (ASTM D 6662) (2003) Annual book of ASTM standards. Conshohocken, PA, 08(03):1035–1049Google Scholar
  18. 18.
    American Society Testing and Materials (ASTM D 1435) (2003) ASTM annual book. Conshohocken, PA, 08(03):308–312Google Scholar
  19. 19.
    American Society Testing and Materials (ASTM D 2244) (2001) Annual book of ASTM standards. Conshohocken, PA, 06(01):240–249Google Scholar
  20. 20.
    CIE (1986) CIE publication number 15.2, 2nd edn. Vienna, Austria, p 74Google Scholar
  21. 21.
    Tidjani A (2000) Polym Degrad Stab 68:465–469CrossRefGoogle Scholar
  22. 22.
    Mayo DW (2003) In: Mayo DW, Miller FA, Hannah RW (eds) Course Notes on the interpretation of infrared and Raman spectra. John, USA, pp 179–204Google Scholar
  23. 23.
    Lacoste J, Carlsson DJ (1992) J Polym Sci Part A Polym Chem 30:493–500CrossRefGoogle Scholar
  24. 24.
    Lacoste J, Carlsson DJ, Falicki S, Wiles DM (1991) Polym Degrad Stab 34:309–329CrossRefGoogle Scholar
  25. 25.
    Fabiyi JS, McDonald AG, Wolcott MP, Griffiths PJ (2008) Polym Degrad Stab (in press)Google Scholar
  26. 26.
    Kamdem DP, Rield B, Adnot A, Kaliaguine S (1991) J Appl Polym Sci 43:1901–1912CrossRefGoogle Scholar
  27. 27.
    Matuana LM, Kamdem DP (2002) Polym Eng Sci 42:1657–1666CrossRefGoogle Scholar
  28. 28.
    McDonald AG, Clare AB, Dawson D (1999) In: Proceeding of the 53rd appita annual confrence, Rotorua, New Zealand 1, pp 51–56Google Scholar
  29. 29.
    Schauwecker C, Morrell JJ, McDonald AG, Fabiyi JS (2006) For Prod J 56:123–129Google Scholar
  30. 30.
    American Society Testing and Materials (ASTM D 3418) (1999) Philadelphia, PA, 8(03):337–341Google Scholar
  31. 31.
    Kodjie SL, Li L, Li B, Cai W, Li CY, Keating M (2006) J Macromol Sci-Part B: Phys 45:231–245CrossRefGoogle Scholar
  32. 32.
    Supaphol P, Spruiell JE (2002) J Appl Polym Sci 86:1009–1022CrossRefGoogle Scholar
  33. 33.
    Seldén R, Nystrom B, Langstrom R (2004) Polym Comp 25:543–553CrossRefGoogle Scholar
  34. 34.
    Rabello MS, White JR (1997) Polym 38:6379–6387CrossRefGoogle Scholar
  35. 35.
    Stark NC (2003) PhD thesis, School of Forest Research and Environment Science, Michigan Technical University, p 217Google Scholar
  36. 36.
    Faix O (1992) In: Lin SY, Dence CW (eds) Methods in Lignin Chemistry. Springer-Verlag, Berlin, pp 83–132Google Scholar
  37. 37.
    Mononen K, Jaaskelainen AS (2005) Holzforschung 59:381–388CrossRefGoogle Scholar
  38. 38.
    Dorris GM, Gray DG (1978) Cellul Chem Tech 12:721–734Google Scholar
  39. 39.
    Grigsby W, McDonald AG, Thumm A, Loxton C (2004) Holz Roh ahs und Werkstoff 62:358–364CrossRefGoogle Scholar
  40. 40.
    Freudenberg K, Neish AC (1968) Constitution and biosynthesis of lignin. Springer Verlag, BerlinGoogle Scholar
  41. 41.
    Lojewska J, Miskowiec P, Lojewski T, Proniewicz LM (2005) Polym Degrad Stab 88:512–520CrossRefGoogle Scholar
  42. 42.
    Meier D, Faix O (1992) In: Lin SY, Dence CW (eds) Springer-Verlag, Berlin Heidelberg, pp 177–199Google Scholar
  43. 43.
    Robertson JE (2001) PhD Dissertation, Virginia Polytechnic Institute and State University, p 185Google Scholar
  44. 44.
    Chiantore O, Tripodi S, Sarmoria C, Valle AE (2001) Polym 42:3981–3987CrossRefGoogle Scholar
  45. 45.
    Hoekstra HD, Spoormaker JL, Breent J, Audouin L, Verdu J (1995) Polym Degrad Stab 49:251–262CrossRefGoogle Scholar
  46. 46.
    MacCallum JR (1965) Makromol Chem 83:129–136CrossRefGoogle Scholar
  47. 47.
    Jabarin SA, Lofgren EA (1994) J Appl Polym Sci 53:411–423CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • James S. Fabiyi
    • 1
  • Armando G. McDonald
    • 1
  • David McIlroy
    • 2
  1. 1.Forest Products DepartmentUniversity of IdahoMoscowUSA
  2. 2.Physics DepartmentUniversity of IdahoMoscowUSA

Personalised recommendations